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The stochastic optimal control problem considered in this report
is charscterized by a dwmmic‘systm which is linear in the state and
control vectors, and which is disturbed by additive Gaussian white
noise, Incomplete, moisy cbservations of the spate vector are available,
~ and the control is required to be a linesr feedback function of the
.es‘t;mud state vector, The components of the state vector and control
vector which are of interest are lumped togethér in a response vector,
and the performance index to be minimiz?d is then a function of the
statistics of the responss vector, It is shown that a well-known
stochastic control problem, whose performance index is the expected
value of a quadratic form on the state and control, 1s a special case
of the more gensral problem described above,

The general problem is then reformulated a2s a problem of minimizing
a nonlinear functionsl on a set in a Hilbert space, In this formulation,
the well-known “quadratic" problem becomss one of minimizing a linear
funotionmal on the same set in the space, Conditions are derived under
which the two problems are “equivalent"; that is, the linear and non-
linear functionals which specify the problems take on their minimum
value at the same point in the space,

A function space algorithm of Dem'yanov iz then applied to the



ix

solution of the generzl problem., This algorithm makes use of the kmown
formal solution to the “guadratic® problem in the iteration procedure,
In function space terms, the algorithm iteratively solves the problem
of minimizing the nonlinear functional by solving a sequence of linear
funetional minimization problems,

The above approach is illustrated by two example problems, In the
’ first example, the objective iz to find a “minimum variance” control
for a third-order dynamic system, In the second example, the objective
is to find a control which minimizes wind-gust effects on a large,
flexible launch booster., The booster dynamics and wind-gust effects
are modeled by a tenth~order time-varying linear diffsrential system.
The function space approach and the algorithms developed were found to
be useful in obtaining good controls for both examples,



CHAPTER 1
INTRODUCTION

1.1 Optimal Control of Stochastic Systems

As long as control systems have been built and studied, yéont’rol
engineers have had to cope with the presence of noise in these systems,
For example, fire control systems in naval vessels are disturbed by
thermal noise in the radar subsystem and by the random pitching and
rolling motion of the vessel's hull in the sea, A current pf-oblam is
minimizing the effect of wind-gusts on the trajectories and bending :
characteristics of large launch boosters, Ususlly, the practical
approach to such problems has been to design the systems conservatively,
so that the effects of disturbance noise or sensor ncise could be ignored,
It is only recently that an organized attack on the problem of noise in
control systems has been undertaken, in the form of studlies in stochas~
tic stability and stochastic optimal control., As yet, these studies
are still in their infanecy, and unified results are not plentiful.,

The stochastic control theory that has been developed relies
heavily on the state variable-differential equation model of dynamic
systan{a. ‘This model can be extended to the case in which random varia-
bles are present in the dynamic equations, if the state variables of
the s&stem are chosen such that they can be described by a multivariate
Markov process (see anhm, reference [2,7]). Then the stochastic
system is described by the joint prpbability distribution of the state

vector components, This distribution can be found by solving a



Kolmogorov partial differential equation, as was done in [2.7]. If
the performance index to be minimized is the expected value of a function
of the state and control, the imbedding procedure of dynamic programming
can be used to derive a type of Hamilton-Jacobi partial differential
aquation, An expression for the optimal control is found from a mini-
mization operation‘ in the sbove equation, and this expression is a
function of the soclution to that partial differential e;luation. So the
optimal control problem is solved if a solution to the Hamilton-dJacobi
equation can be found, |
The above dynamic prograwming approach has been the most popular
one in stochastic optimal control studies, and has been used by
 Florentin [1.1], Orford [1.2], Kounias [1,3], and many others, Survey
.papers on this and other approaches, such as the application of stoche
astic stability theory and the stochastic mascimum principle, have been
written by Wonham (2,7], Kushner [1.4,1.5], Paiewonsky [1.6], and
Mayne [1.7].

1.2 Motivation of Research

A well=known problem ﬁ'hich has been solved by the above Mic
programing approach is one in which the system equations are iinaar
and the performance index is guadratic in the cbrrtrol and state vactors.
The plant is disturbsd by additive Gaussian white noise, and incomplste,
noisy observations ars available to the controller, The formal soiu-
tion to the problem of minimigzing the abové performance index ie‘s' kmwn,
and is to chooss a control which is a linear feedback function of the
Kalman filter state estimate (see, e.g., Worham [2.71) |

In & study of the design of controllers to alleviate wind-gust



effects on launch boosters [2,4], Skelton formilated a stochastic
control problem similar to the one above, but which had a nonquadratic
performance index, This index was a very useful one in practical
applications, because it gave an upper bound on the probability that an
eyent of "mission failure" (such as excessive vehicle bending) would
oceur during the launch, He showed that there were certein similarities
between his index and the quadratic one, and conjectured that the two
problems could be made to be “equivalent" (i,e., have the same solution)
if certain conditions relating the two performance indices were met,

He derived necessary conditions for “equivalence” to cceur, and also
proposed an algorithm for finding the quadratic performance index that
-was equivalent to his nonquadratic one. Oﬁca this index waé found, the
known solution to the "quadratic” problem was also the solution to his
problem,

This concept of "equivalence" of stochastic control problems was
an interesting one, but Skelton left many questiéns unanswered, For
example, he éave no conditions that guaranteed the existence of a
“"quadratic" problem that was equivalent to a nonquadratic one. Also,
Skelton's algorithm was not an automatic one, but involved some engine-
eering Jjudgement in the iteration loop, and no proof of convergence of
the hlgbrithm was available, Skelton's method was successfully used to
obtain good controls in the gust-alleviation problem, however, so it
soemed that his approach had much practical merit,

To investigate some of the above concepts in a more rigorous theo-
retical framework, the problems deseribed above wére’refbrmulated as
ones of minimizing functionals on a Hilbert space, This szmnlation

turned out to be a fruitful oné, because a mumber of the theorstical



results and computational techniques in functional analysis could then
be applied to solving Skelton's problem, In particular, a geometric
interpretation of Skelton's “equivalence" concept was developed, anﬂ

- conditions which guaranteed the existence of an egquivalent "quadratic"
problem were derived, Also,a function space algorithm of Dem'yanov;s
was applied to Skelton's problem, and the algorithm was shofmﬂ to
converge., To illustrate the results obtained, two example problems
were solved., In the second example, a suboptimal approach was developed
to solve Skelton's booster control problem, which originam motivaked
the reseaxrch,

1.3 Organization of the Thesis

The thesis is divided into seven chapters. In Chapter 2, the
clas;. of control problems to be considered in the thesis is defined,
The formulation is similar to Skelton's in [2.,4], The well-known
stochastic control problem mentioned above is shown to be a member of
the class, and the formal solution to this problem is given, Chapter 3
reformulates the above problems in a function space, and a geometrical
interpret;tion of Skelton's equivalence concept is given, This chapter
also presents a motivation for the equivalence theorsm and the algorithm
to be developed in later éhapters. The main topic of discussion in
Chapter 4 is the derivation of a set of conditions which guarantee
eqﬁivalence between s "quadratic" problem and the more general problem
defined in Chapter 2, Chapter 5 gives a function space interpretation
of Skelton's algorithm, and introduces the perturbed gradient algorithm,
A proof of convergence of the latie'r algorithm is also given, The
ccmputé.tioml results of two example problems are given in Chapter 6,



to illustrate the usefulness of the methods developed, Conclusions
and recommendations for future study are presented in Chapter 7,



CHAPTER 2
A STOCHASTIC OPTIMAL CONTROL PROBLEM

2.1 Introduction

In this chapter, a preblem of finding an optimal c‘ontrollor for
a 11np¢r plant subject to disturbance noise iz presented., It is assumed
thet the plsnt can be dascrihéd by & finite mumber of linear differential
equetions, and that the (white Gaussian) noise enters additively into
the plant equations, It is also assumed that incomplete, noisy observa-
 tions of the state vector are made, and that the control is a feedback
.om using ‘tbue observations, Thess assumptions ave diecussed; and &
general performance index to be minimized is giwen,

A special case of this general problem, in which the performance
index is a quadretic form in the state and control vectors, is discussed
and the well-known formal solution 1s glven,

2,2 Statement of the General Problem
The dynamic system model to be considsred is 2 linesr plant desw

eribed by a differential system and perturbed by an additive white
Gaussian distirbence noise:

éggsl = A(t)x(t) + B(tha + w(t) , (2-1)

with x(t,) =0, (2-2)



?

and x(%) = (n x 1) stats vestor
u = (mx 1) eontrol vecter

v(t) = (n x 1) neiss vector.

This perticular model is chosen bscause it can be used to represent
many linear physical systems, and ean be used as an approximation to
certain nonmlinear systems about o nominal operating point or trajectory.
The assumption of an additive Gaussian noise imput to a; linear system
is & useful one because it guarentees that x(t) 1s also Gaussisn (see
Kalman (2.1], Theorem 5), In addition, moise in physicsl eystems can
often be approximated by a Gaussian process, The assunption of white
noise i# wot en unduly restrictive ome, becsuse "colored nolse® can often
 be represented as the outpat of & linear filter whose imput is white
‘moise. The linsar filter equations can then be adjoined to the original

system equations, producing o linear system with white additive noise,
.8 originally assumsd, | .
Since not all couponents ef x and u ave of mm#t in the evalua-

tion of performencs, an f~dimenzionsl response vecter r(t) is defined:

r(t) = C(%)=x(¢) ¢ D(th (2-3)
It is assumed tuat incomplete, nolsy messurewents of the state
wvactor ave avallable:

2(t) = B(t)=(t) + wit) , (2-8)

where ‘z(-h“) = (kx1l) measarensnt veclor,

w(t) = (k x 1) noise vestor.
 Again, the noise w(t) is sssumed to be additive, white, and Geussian
for simplieity, The case in which w(t) is "eolored" or soms of the
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components of 2(t) econtain no moise is discussed by Bryson and
Jehansen [212’.
The noise vectors v(i) and w(t) are completely desoribed bys

E(v(t)] = E[w(t)] = 0 , (@)
.ﬁ;kg)v'(?)J = H () 8(t-r) (2-6) ,
Blw(the’ (1)] = K, (t) 6(ter) (2-7)
mu){’(«:_); =0, '(2-8)

: where E[«] denstes the mmtion opsrator, tlm prime denotes trense

. pose, and 8(twr) derotes the Direc delta function at ¢ = 7,

- '!hoto]lwing conments M,dbaudo: )
1) It is usqmd that the uystam operates for a fixed time, ts[tn,ﬂ.
where t, and T are given.
2) The matrices A(t), B(t), C(t), D(t), H(t), N, (t), end K _(t) are
a1l assumed to be knmown and to have proper dimensions; their
" elements are assumed to bs sontimous for teltyeT1s
3) N (t) is sssumed to bo positive defimite for all t€(t,,T]. This
sgsumption is the sams as that of no “"perfect msasurements" mene
tiened previously.
The set of admissible controls to be considered iss
0 { B0 S RREL), g the clement of K(1) },oug)
vhere K(t) = (m x n) feedback coefficient matix
2(t|t) = (n x 1) Flman Pilter estimate of x(t) given cbservations
z(r), T€[t,st),

"



The theory of the Kalmsn filter is w&ll-estnhlished (see, o.g.,
[2.1] and [2.3]), and is especially useful in the above problem, since
x(t) is a Gaussien process, The Kalman filter estimate is:tium tho best
estimate, not only in the i ndmmm mean-osqmro amr sem. :b\ii with
‘respect to other error criteria as well [2.3]. A linear feedback law
is assumsd in order to guarantee that the control vector is Gaussiang
thet this is true can be verified by examining the Kalmn filter equa-
tions, In addition, the linear feedback law is easy to implement in
prectice, and is therefore useful in applications, The asampﬁibn also
“decouplss” the control problem from the estimation problem, which is

now assuped to bo solved,
For the above oase, the Kalman filier equations ares

ﬁgtzjﬁ = [A(t) = B(£)K(t)J%(t|t)

(2-10)

+ B (6’ ()8, (8)a(t) - E(LRER] ,
with 2(t lt,) =0, (2~11)
and where B, (t) = E[X(t[tFE’(¢]¢)] (2-12)
.na | x(t]t) = x(t) « 2(5|t) - (2-13)

=2 orror vector,

- The matrix B, (t) is not a function of the observations z(t).
is the solution of the error covariance equation: i

di: = A(L)E, (t) + B (L)A(¢) = Ek(t)n‘(t)n,, (t)H(t)Ek(t)
ST e TR e - (2-14)
s Nv(t) ’
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with Ek(‘b-o) =20 . E “(2-15)

| othor qmmtitioa in (2-10) to (2—11&) are previously given, so

the Ktlun mm- is completely specified once the coefficient matrix
K(t) is given, And s0 the;oontral u is specified when K(t) is given,
| The performance indax e bo minimized is of the general formt

P et S bl
Jmniamye [ rlswle, (2-16)
'ahoro 8(t) = EC:r(t)r, ()} (2-17)

. = covariance matrix of the response vector r(t),
Hote that 3(t) is indeed a covariance matrix, because ’
E[x{(t)] =0, (2-18)

which can be easily shown,

Note also 'hhat r(i".)' is a Gaussian process, since all the equations
defining r(t) are linear and contain additive Gaussian noise, Since
r(t) 4s a gzero-mean process, it is completsly described by the covari-
ance matrix S(t)., Thus it is not nma;omble to choose a2 performance
index of the sbove form, Because the charecteristics of the process at
the terminal time may be of speclal interest, a ssparate term involving
S(T) is included in the performance indsx, The process characteristics
 to, be controlled during the time period [t,,T) are weighted in the
integrel term, |

Uaing the above doﬁ.nitionu, wo have the following statement:

mm& nts Chnosathecontmluéﬂtomi:ﬂﬁ.m
the portomma index J, subject te the system side-conditions (2-1)
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to (2-8) and the Kalman filter side-conditions (2+10) to (2-15).

This probilem, uainé the general performance indsx in (2<16), has
not been solved. A spscial case of the above probilem has been solved,
however, and will bs diseassed in the next section, Skelton in [2.4])
also considered a speclal case; his approach will be discussed in
Chapter 3, '

2.3 A Special Mmadretic Performance Inda
" Florentin [2.5], Ton [2.6], Wonham [2,7, 2.8], and others have
discussed the above problem for the case in which the performance index
is the expscted value of a quadratic form in the system state and contrel
vectors, In the notation of the gensral pmw.aﬁ. the quadratic perfor
. mance lndex iss |
Jo= B {r’(r)ap(r)r(r) + f

%

» (£)a(t)e(t)at} ,  (2-19)

where QF(T). = (ix 2) symmetric positive semidefinite matrix with
bounded elements,

and Q(t) = (ix #5) symmetric positive semidefinite matrix whose
elements are contimous on [t,,T].

Note: The matrix D/(£)Q(4)D(t) is requived to be positive definite for

s11 te[t_,7] to insure the axistencs of & solution to the quadratio

protlem (D(t) is defined in (2-3)).

The performance index JQ can be rewritten in the genersl formi

| ?
Jq= Tr [Q(T)S(T)] + j‘t T [Q(t)3(t)lat , (2-20)
<]
where IT denotes the trece operator (takes the smm of the diagonal

elements of & matrix),
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The solnficn to the problem with qmdmtic p@rfemm index
(the "quadratic pmblm") bhas been found by using the . "cam:mhy
equivalence principle® as in [2.5] and by the stcchastic nmmon-amm
equation of dynawiec programming, ag in [2.7]. In w casa, the optimal
ooubroller for the guadratiec problem using the notation of the g@mml
problem is as followsy |

v = «E*(£)2(¢]t) , (2-21)

whore 2(t|t) is the Kalman filter estimste of x(t) given observations .
s(r), T€[t,,t), and is defined by (2-10) to (2-15) using K*(t) for
K(t). The optimal feedback cosfficient is given by

CEM(t) = [D7()Q(EID(R)T B! (1), (8) + D/(L)R(E)C(E)]

(2-22)
and va(t) is the sslultion of the Ricoati equation
ar (%)
g = =7 (LR, () = P_(L)A(t) - C’(£)alt)C(t)
(2-23)
¢ T+ (£)D7 (£)Q(LID(L)Kx (%),
with the boundazy comdition
Py(1) = C*()ge(T)C(T) D

It unst be ni'cd thet the form of the optimal control in (2-21)
would be the same if u were ommredto be & function of past
ebuemtmm g{v), ?»@[t st)s That is, the fact thet u* is a linesr
rm&m@tmmmwrmw ostimets is intrinsic to the
quadratic problen, and is not morely a consequence of the requirement
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that u € U,

The above solution to the problem of minimiging Jq 18 generally
scoepted to be correct, although no completely rigorous proef of the
results has been published to date (as far as is knowm). Since the
above results will be used extensively in the following chapters, it is
convenient to sumariss the sclution in the following assertion:

Assertion 2,1 (Solmtion of "Quadratic Problem"), | Sappose we are
givens
1) the desoription of the dynamie sysm.‘rasponse vector, and

measurement vector in equations (2-1) to (2-4) defined on [t,,T]s
2) the equations (2-5) to (2-8) describing the white Gsussian noise

vectors v(t) and w(t); |
3) the set of admissible controls g:l.vsz; in (2-9);

4) the paremeter matrices A, B, C, D, H, N, and H_, with known
elements contimious in ¢ on [t,,T]; -

5) R, (t) positive definite for all t€[t,,T];

6) the performance index Jq defined in (2-19), with the associated
conditiens on Qp(T), Qt), and D’(£)Q(LID(t)s

Then the problem of selecting the u € U such that qusnﬂ.nim:od,
under the above eonditions, has a unique solution, given by (2-21),
The optimal feedback coefficient K*(t) is deﬁ.ned by (2-22) to (2-24),
and the Kalman filter state estimate 2(t|t) is defined by (2-10) to
(2415),
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- CHAPTER 3.
- FORMULATION OF THE PROELEM IN FONCTION SPACE -

3.1 Introduction -

v ‘In a stady of the design of controllers to -aﬂ@h wind-gust
effeats on launch boosters [2,4], Skelton introduced the motion of.
"quadratic oquivalence™ into the.study of stochastie problems.. He
formmlated the wind-gust problem in the form of the general problem
posed: in Section 2.2, using a spocific form of perfoimmance index J, .
Using an anslytic method, he developed necessary conditions that &
quadratic problem, as defined in Seetion 2.3, have the same solution
a8 the more general problem of mimimiging J, He assumed that such &
quadratic problem exists and that the solution to the generai problem
exists, The two problems are then said to be "equivalent”, since
knowing the solution to one implies knowing the solution to the other;
A further discussion of the derived necessary conditions is given in
. Appendix A, and Skelten's algorithm for finding the equivslent quadratic
problem is discussed in Section 5.2.

The notion of ths "eynivalence® of .stochagtic'problm is an
interesting one, but Skelton doss mdt glve any -conditions that guarantee
the existence of an equivelent problem, Also, the amslytical method
he uses does not yield much insight into the meaning of equivalence of
control problems, To overcome these difficulties, a geometric inter-
pretation of the problems posed in Chapter 2 was developed, using the
theory of minimiszation of functiorals on a Hilbert space, This



15

formulation yields a clear interpretation of squivalence, and suggests
conditions on the general problem which guarantee the existence of an
equivalent quadratic problem, In addit’ion, algorithms for finding the
equivalent problem can be easily visualized using the function space
approach, '

In this chapter, the stochastic problem is first transformed into
& monlinear deterministic one, so that the equations felating the
covariance matrix S(t) to the feedback coefficient K(t) are expressed
in a deterministic form, Then the function space o is defined and its
properties derived, The stochastic problems defined in Chapter 2 are
then interpreted geometrically in o, and the notioﬁ of equiv:.leneo is
~ explained in temms of two functionals taking on their minina at the

sames point,

3.2 The Stochastic Problem in Deterministic Form

In Chapter 2, the equations which describe the behavior of the
system are stochastic in nature, Given a2 feedback gain coefficient K(t)
and the processes v{t) and w(t), the process x(t) is then determined,
a8 is the covariance matrix S(t),

In Appendix B, it is shown that the following set of deterministic
equations also determine S(t):

S(t) = [C(t) - D(L)K(L)IC (£)[C (t) - K(£)D(¢)]
+ D(L)K(L)E, ()6’ (8) + C(E)E (L)X (£)D’ (%) (3-1)
- D(t)K(t)E (£)K' (£)D/ (%),

where  C,(t) = E[x(t)x’(t)] , (3-2)

ard is the solution ofs
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e, (t)
._a%.._ = [A(t) - B(t)K(t)JC (t) *+C (t)CA’(t) K’(t)B'(t)]
| (>3
+ B(t)E(L)B (t) + Ek(t)x'{t)B'(t) + ¥ _(¢),
with indtial conditions
e cx(-b )'-a 0, (3"‘4)

The omr mﬂ.anco matyix Ek(t) was dnﬁ.md :m oqurtﬂ.on (2-12).
utisﬁes (2-14) ard (2415), ' The paremsters 4, B, C, D, K, and u, &ve
nlm hnn doﬁmd in (zuptor 2, So. by the abovo oqnations. B(t) :L:
dnt.omd onoe K(t) and the noise parmters Ny(t) and ﬂw(t) are |
sp.oified _.

Since S(t) desoribes the system behavior completely (vith’r.es'peét
to the performance index), and is detemmined ence K(t) is givoix. tho
equations (3-1) to (3-4) and (2-14) to (2-15) can be regardsd as a set
of detemministic system equations, Then S(t) is identified as a now
“state matrix® of the system, and K(t) as the "control matrix®, This -
metliod of trensforming a stochastic problem inte & deterministic ome -
has besn used by Jeswinski [3,1], who also derives “state equations"
involving the covariance matrix of the originel state vector, and using
the feedback ccefficient matrix as the new contrel. Also, Kushner - :
[3.2], Mortensen [3.3], and others have converted the limear stochastic
system equation into a nomlinesr deterministic partial &fforentisl
equation in the probability demsity of the state vestor.

The admissible eontrol set in tils formilation is then:

" u_ [ K(t)s the elements of K(t) ”
U { contimious on [t +T] e (3-5)
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This set is, of course, simply & modification of the set U defined in
(2-9). |

Then we oan state the following:

Genere], Doterministis Contro] Problems Find the K(t) € U, that
minimizes the performance index J, subject to the system equations (3~1)
to (3-4) and (2<1%) to (2-15),

This problem is the same as that posed in Soction~f2.2'. ut now
the relationship between K(t) and S(t) is brought out more clearly, -

3.3 The Function Space o
In this section, an abstract function spece o will be defined and

its properties stated, The interpretation of the control problem in ¢
"+ will be studied in Section 3.4
The basic ¢lement in o has the following form:

8 = [op, o(t)] , (3-6)
where ep = ( & x 1) real vector
's(t} = (k x 1) real mmable vector functien of t on [to.‘r].

Lot 8 = [opy o(t)] and & = [gy, g(t)] be two elements in g, Then the
following operations are defined:

s) additions
84+ 8m [oy + gp o(t) + g(t)] (37)
b) mitipgga_tﬁ.en by & aoalar‘h

A8 2 Degs A0(t)] . (38)



18

The mull element is defined ass
389-'4['0. 9] . (3‘9)
. For any two vectors 8, § € o, an inner product is defineds
(8, B)=ep e gp+ jt e(t) * g(tlat, o (310)
o ) e et

where the-dots indicate the Euclidean scalar product, Define the nomm
of & to bes - L

8o = &, &3F, (31)
vhare the ﬁosafi; squam root is ehosm;.
* And let the metric in o be: I
ots, &) 4 118 - gllo (312)

Then the definition of o followss

Definition 3,1, The space ¢ is the collectlon of-all elements §
or tha fom g.ven in (3—6), such that Hollo < » and the operations (3-7)
to (3-12) m defined Two eleurrbs of o, say 8 and @. which have the
property that ep = gp and e(t) = g(t) almost everyuhere, are identified-
as the sawme element; that is, § = § if p(8, g)= O, '

In Appendix C it is shown that ¢ is the "direct sum" of a k-dimen-
siomal Eaclidean space and k Lz-spcoea, and is thus a Hilbert ﬁ os
(by Lenima-19, Danford and Schwarz [3.4], p. 257). The second part of
Definition 3.1 is necessary to satisfy the netric apace axiom tba.t
p(8, 8) = 0if and only if 8 = §, Thuacis m].]ya spaao of"oquiv;- |
lonce classes” of functions (for a diseussion, see Radin [3.‘5]»', Pp.65-66),



19

3.4 The Stochastic Problem Interpreted in o-space
In Section 3.2.’ it was shown ’that the response covariance matrix
S() eould be regarded as a "state® of the determimistic system, For
notational conveniense, this state matrix will be comverted to a state
vector s(t) by "stacking” the columns of S(t), That is, if

sn(t) ; 'm(t)"""’sfl(t}
s,.(t) s, (t) :
s(¢) = | 2 200 . (3-13)
B;l(t) : "'Ulitﬁi:jaz‘t(t)
the (6. (4)
n : ﬁn(t)
~321(t)
s(t) = |a,(t) (G-
s, (t) |
s"“‘('b)
is said to be the (#2 x 1) covariance state vector,
Now, form the element s
8 = [8(7),s8(t)] (3-15)

The element § is now shown to be a member of the space 0. Consider the
equations (3-1) to (3-4) and (2-14), (2-15), which define S(t), and
thus also defins 8, The matrices C(%) and D(t) are defined to be
contimiouss K(t) is contimous by (3-5); Cx(t) and Ek(t)'m~ solutions
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of differential equations and are therefore eonfhirﬂous».‘ So the elements
of S(t) are comtimous, and therefors measurable and also in 1%, If
the dimension of the vectors s(T) and s(t) are identified 83 k = 1.‘2, ’to
conform with the notation in Section 3,3, it follows that 8 € o,
The definition below will be nseded in ths following discussion:
Definition 3.2, The get of atiaimbility o © o is defined as

follows:

o= B 8(t) is the solntion of the deterministic system
equations, given a K(t) € Ugs for el t,,1]

It should be noted that this set differs from the ususl set of attaine
ability in that it considers the system response to admissible controls
. over the whole time interval of interest, not just at some particular
torminal time, It can be interpreted as the mapping of Uy into o by
means of the deterministic system equations.

The perfomame index J of the gemeral problem posed in Chapter 2
can now be interpreted as a nonlinear funetional (in general)on § € o

; T
J = 3(8) = £;[a(D)] + L, £,0s(t)]dt (3-16)
[+

To express the quadratic functional JQ in sinilar form, first fomm the
vectors qp and q(t) from the quadretic coefficient matrices Qu(T) and
Q(t), respectively, using the “stacking” procedure outlined above,
Then, referring to equation (2-20), it can be seen that Jy can be
written as:

v .
JQ = JQ(‘S) = qp " s(T) + L q(t)} s g(t)at . (317)
o

Thas JQ is 2 linear funstional ono.
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Using the above notions, we have the following:
‘General Problem in ge-space: Find ihe point § € @ (and the corres-
ponding K(t)) such that the functional J(8) is minimized on o,

This problem can be visualized geametriéaﬂy if the following space
F is defined:

F = product space of ¢ and Rl, (3-18)

where Rl is the resl 1ine. Since the values of the functionsl J are in
Rl, the probl&n of minimizing J(2) on ¢ can be represented figuratively
as shown in Figurs 3.1, The set &¢ € ¢ is m, aleng with an arbitrary
point 8 € w, The functiomal J(8) can be viewed as a hypersurface in F,
and JQ(S) as & hyperplane, The point §* is the point in o for which

' J(8) is a minimm The matriz K*(t) which corresponds to §* is then

the optimal feedback coefficient, and is the solution to the stochastic
control problem, The set a@ in o will be defined in Section 3.5,

Other quantities of interest in the discmssion to follow are the
first and second differentials of the fanction J (see, e.g., Vainberg
[3.6] for defimilicn and discussion), and the gradient vector of J,

The explicit expressions for these quantitics are given in the theorem

below, which 1s proved in Appendix C,

Theorem 3.1
Assume ths following:
1) J(8) is defined for oyery g€ "é
28y, L, M £
2) 1, z,rﬂgm,“*g“,anda—gzenatandamfmteform
te[t,,T1, and have elements contimuous in s for every 8 € o {see

(3=26) and (3-27) for definitions),
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& = [8(7),s(%)]

&

s(T)

Figure 3.1 The Mimimization Problem in F=gpace
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And let 8 = [eF, m{'h)J amﬁﬁ = ['ﬂF, T(t)] be arbitrary elements in oy

then ( see Appendiz D for background materials):

1) J hss a Gatesux (wesk) diffeventisl (see Defimition D,1) definsd
at ’eaeh 8 € g, for every element 8 in g, and it is given Yy

VI8, &) = (Dd(2), 8) , (3-29)
afy afz
vhere  DJ(8) = g‘““, (t)]fg (3-20)

is the gradisnt vector of J, and is an element of o3
2) J has 2 ssoond Gatesux differentiel (see DPefinition D.2) at
2 €o, for a1l &, fi€ o, given bys

Va8, 8,7 = 0P8, 8), T , | (321)

2
where nzs(m s)a[ai exn:? y|

(3-22)

iz an element in o,
3) TFuarther, if DJ(8) ard DZJ(@, 8) are contimwus in & (in the wom
of the g=specs), then VJ and V%a.m also contimaous in 8,

A corollary of tha above theorsm follows immediately from the

definition of Jop

Corollary 3.1
If Jy is defived as in (3=17), then

Vig(8, &) = (DJy(8), 8) , (3-23)
where  DJa(8) = [ap. q(t)d, (3-24)

and VZJ {ﬁ 8, W) =0, (3-25)



2h

The gradient vector defined in the sbove theorem gives the
ndirection” in which the funetional J rises most rapidly. Since JQ is
& linear functional, DJQ is a constant vector and does not depend en &,

The ,foliwing notation for the partial derivative vectors and
matricos was used abovey

az, 3%z, azf% 3%,
3%“ » 3812 81952 E’ﬁgsk
afi = afi v 2 fi =2 bzf . ¥
8 |3, a8° 1t .
. 332331 . .
e ® .
ar ;
] ¢ . 2
a8, 2%t 3t
bes pu ""%’“‘ask 81 covenae ';;;ﬁ"""‘
(3-26)
for i = 1,2, vhere
5
8
2
gm0 ’ (3-27)
®i
M-
and k = ‘2 .

As mentioned abovs, the gradient vector DJQ(ﬁ) does not vary with
8, Thus, another interpretation of the problem of minmimizing JQ on ¢
iss find the § € o (and the correspending K(%)) such that (DJQ, 8) is
minimiged, The resulting optimal point, 8*, is the point in @ which
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13 the "forthest” in the direction of the negative gradient Wr. :
Such an optinel point ean be shown to exist, if Assertion 2,1 is
asgumed valid, The assertion gusrentees that 2 unique solution to thm
JQ-problbm exists, in the form of an optimal feedback coafﬁcienﬁ,
K*(t), Using E*(t) in the deterministic system equations yields 8%,
Since K*(t) is aoutinmuous in t, so is z*(4), defined by |
B* = [s%(T), s*(t)); and &*(T) is defined, So 8* is an element of ¢,
and is the required optimsl peint,
The abova remarks on mirﬁmi:zing JQ will be used in the foum
chapters, and can be summarized by the following theorem: |

Theorem 3.2
The stoohastic control problem of finding & u € U to minimize Jg,
outlined in Jection 2.3, can be interpreted as finding a point 8 ino
‘at vhich the functional Jo(8) tekes on its minimum value, Also, such
& point 8* exists snd is unique if the matrices Qp(T) and Q(t), which
define the functional Jqo satisfy the conditions in (2-19)., TFurther,
8* iz found by using the optimal feedback coefficient XK*(t), defimed in

(2-22) to (2-28), in the deterministic system equations (3~1) to (3-4),

The method t0 bs used in minimizing the functional J(8) on &
depends on the location of the minimmm point 8%, If $* is known to be
in the interior of o, steopest~descent or gradiemt msthods in fnnetiqn‘
space can be used to find 8%, This problem is essentially that of
finding the minimum of a functiomal on the whole space, and can be
attacked in a variety of ways (see, e.g., Kantorovich [3,7], Goldstein
(3.8]). The main diffioulty is in finding the optimsl feedback
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coefficient K*(t), given the minimonm point 8%, This is not a trivial
problem, due to the nonmlinearities in the deterministic system oguations
(3-1) to (3~k),

The intbresting case s that in which 8% 1is known to 1ie on the
boundary of o (assuming that o has & beundary). HFote that the point
which winimiges J@’ if soch & point exists, must 1is on the boundary
(to be proved), Also, the method of finding the mimimm point is known,
since the solution te the “guadratic problem” is koown, So, it is
consoivable that, under the pﬁp@ wn@iﬁi@m on J, there exists a
fanctional JQ whoge winimizing point #* € ¢ is aleo the point which
minimizes the functionsl J, Then the problem of minimi
to be sguivalent to that of minimising J, So if the equivalent preblem

" oan be found, its known selution can be used to find the solution te

ging JQ is said

‘the more generel problem posed in Chapter 2,

The conditions on J which will insure the exlstence of an equivalent
problem, and sufficlent conditions for two problems to be eguivalent
are discussed in Chepter &, In this section, the notion of equivalence
iz introdunced and corisin related definitions are mads,

For counvenieuse, the problem of {inding the point 8% € @ al vhich
the functional J(&) tekes on ite minimms will be called the "J-problem”

(and similarly for JQ), Fow, by definition of the Jg functional in

(3-17), the Jq-mblm is defined whem the quadratic coefficients
QF(T) and Q(t) are given, 7Tho follewing definitions will be used in
Chapter 41

ition 3.9 4 Janmhlm is said to Do sdnissible if the
quadratic coefficlents Qp(T) and Q(t), which definme Jg, satisfy the
conditions in (2-19),
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Definition 3,41 A point 8% € @ is said to be a minimus point of
a J=problem if J(&*) € J(8) for all 8 € w.

Defirdtion 3,5: The setan:af is the set of wmindwuwsm points of
m admissible quproblm,

The set @q is depicted in Figure 3,1, It was previously suggested
that the mirdmmm point(s) of a Jq-problem lie on the boundary of @, so
¥, is ehown on the boundsry., WNote that oy is well-defined dus to
Theoren 3,2,

Definition 3,6t Two pmi:lqs are said to be eguivalent if they
have a common minimam point.

It can be seen that, if a mindmum point of J lies in ey, then an
; equivalent JQ-pro'hlm exlsts, The conditions en J to insurs this will
" be disoussed in the next chepter. Some methods of actually finding thie
JQ-pra’bm~ars pmaentod in Chapter 5.

The above discussion of equivalemce iz not intended to be & rige
orous one, tut is meaent to motivate the theorems which will be developed
in Chapter & and the algorithus to be discussed inm Chapter 5., The results
in those chaptsrs are a conssquence of the funetion space interpretation
of the stochastic problem, and mske use of the available theory of the

constrained nﬁnimisat&.op of a functional.
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CHAPTER 4
SOLOTION OF THE PROBLEM IN FUNCTION SPACE

k1 Introdustion

In Chapter 2, the stochastic problem to bo solved was dofined,
In Chapter 3 it was interpreted as a problem of minmimiszing a functionsl
on the o=-space, and the oﬁsiemq of equivalent stochastic problems was
conjectured, In this chapter, Theorem k,1, which gives necessary and
sufficient conditiots for the eguivalence of J= md JQ-pmwmg; is N
proved, This is preceded by a preliminary Lemms, which gusrantees that
" the functlonsl J (defined in (3-16)) ean bo expanded in a Taylor #ériefg
in funetion space, Then, assuming that @ is convex and that the mini- .'
wam point of J is known, it is shown that an equivalent JQ—proble;u -
exists; and is defimed by the gradient vector of J at the mintmum péi:ﬁt.
- Conversely, it is also shown that if a J-problem and its golution sat..
isfy certsin conditions involving the gradient vector ofd , then the
golution defines a mintium point of J, The proof of Theorem 4,1 has
certain parallels with the proof of Dem'yanov's Theorem 1 im [M,1], A
second thoorem, which gives a ;mnber of properties of the sels o and
aq (defined in Chapter 3), is also proved in this chapter, Az yet, a
goneral convexity theorem for ¢ is wot available, The nmonlinearities
in the deterministic system squations (see Section 3,2) make it very
difficult to derive such & general theorem, However, 2 method for
proving comvexity is outlined in Section 4.4, and sufficient conditions
for convexity are derived for & simple ssalar system, In general, the
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convexity of « must be assumed or proved in each particular case if
Theorem 4,1 is to be applied to a specific problem, Aside from con-
vexity, however, Theoresus %.1 and 4.2 give a complete set of conditions
i‘or solation of the J-problem and for use of the algoritims to be dis-
cassed in Chapler 5,

In this chapter, 1t Ao sssumed that a specifie J=problem has been
posed and must be solved, It was conjectured im Section 3.5 that, if
the J-problem met cortein conditipons, then an eguivalent quproblem
exists, Then, zinece the solution to the latter problem is lmown, so
is the solution to the Jeproblem, The required conditlons on J ars given
. in Theorem &,1.

A proliminary Lemma concerning the Taylor series expansion of Jd
will first .he proveds

Assume the following:
1) J(8) is defined for every & € o3
ar, ar, 3% 3%,

2)  f1s fh0 §50r G50 57 o And 55~ exist and are fimite for all
te[t, 7], and have olements contimuous in s for every B €0 (seo
(326) snd (3-27) for definitions)s

3)  DJ(8) and DZI(8, &) are contimmous in 8 in the norm of the g-space
(ses (3-20) and (3-22) for definmitions),

Then, given 2, & € o, the funetionsl J can be expanded in the
following ways:
Firmte Increment Foxmulas
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JB+ (@ ~8)) = J(B)+y(Di(B), 8 ~8)+0(y) (4=1)
' I&W}F@mlm
J(B + y(8 « 8)) = 5(8) + y(DI(8 + B(8 ~ 8)), & - 8)(4=2)
Taylor Serdes:

38 + y(8 - 8)) = J(8) + ¥(DI(B), & - B)

: (4=3)
* é (%33 + 8(8 - 8), & - 8), & - 8),
where lim 2;22@0, (l=dt)
Y= 0
and y and B ore real counstents,
v €0, 1], p €0, 7}- (4=5).
Proof
Choose &, | € o, and form the fanetion glyh
gly) = 3(& + ¥ 1), » €(0, 2. (56)
Using (4-6), the derivative of g is dafined as:
42®) . 1in J&Myﬁwaﬁ)w(ﬁ-wm ()

6§+ 0
By Defirdtien D.1 (inm Appendix D), the above expression is simply the
Gateanx differentisl of J at the point (8 ¢ v fi), in the directien fi,
are the same as those of Theorem 3,1,

Since the mqtm%s of tho laommea
the theorem is applicalie. Thus it is guareanteed that the differential
exists, Uso (3<19) in (h7)s
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Y w va@ 44§, ) = 036+ y A, D, (4-8)

 B3mllerly, the sesond derivative of g is defined as:

2 o

980, yum WEeyfesf, B -vEeyd, D

890 &
(U4=5)

By Defindtion D2, (4~9) is the second Gatesux differential of J., And

so by (321)s

2
g@%%ﬂw VZJ(@ Yy ﬁc {%s ﬁ)
&y (4=10)

o (0238 + ¥ §, B W),

_ where Bzef(§_;§” b4 ’@s ﬁ} is defined in (3=22). How, hypothesis 3) of the
Lemma guarantess that ths third sonsloszion of m%mm 3.1 applies; that
ig, that the differentisls VJ and V2J are contimous in 8, By inspoce
tien of (4-8) grd (4=20), it Pollowe that g’ (¥) avd gy} are comtimmous
in y. 8o glv} can be erpanded in the fellowmg ways, all of which are
spsclisl eases of ths Yeyier fermals (ses, ®.8., Kaplan [5.2], p. 357)s

g{y) = g{o) + vz (0} 4 oly), (B33

glr) = z(0) + ve (B, (b412)
2

g(y) = 6(0) + 7g'(0) + 5 °(8), (423)

¢

where lim ﬁf.?:lw 0, and v €[0, 1], B €(0, +]. |
p 2 0 ¥ !

Then the Lepms follows by substituting (4=6), (4-8), and (8=10) iuio
(Ba11) %o (B13), and lotiing f = § - 8, Q.E.D,
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The following equivalonce theorem can then be proved using the

Thoorem 4,1
hosonas

the set & is convaxy

2 mindeem point 8° of the Jepreblem existsg

d -3 ¢ :
if 8 € o, the matrices 3% and 55% (£) are positive semidefinite,

and D*(t) ;;3 (£)b(t) 1s positive definite for all t€[t,.T], vhen
all the metrices are evaluated et 8 (D(t) is defined in (2-3));
the hypotheses of Theorums 3.1 and 3.2 are satisfied,

Then the following resulis holds

An equivalient qu@wblm exisis, and is specified by:

§ = DI(8°) (B=1t)

thet is, Jo(3°) < J4(8) and J(8°) < () for 211 3€a, where
3,(8) = @I(°), 3).

2)

dssume, in edditiom, that:

a) J(8) is & convex functionsls

b) A point 8% ¢ @ is found such that it is a mimimum point of the
Jg-problem d@ﬁm by § = DI(8%); L.e.,4§oan be computed from DI(EF).

Then 3% 45 also o miniwum point of the Jeproblem (and so by con-

elusion 1) a;f:aove. the J-problem and the J,=problem which satisfies the
relation G=DJ(8%) are equivalent),

Q

Proof

1) By hypothesis, & mirimum point of J exists, Iet §° be such a point;
that is,
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JE)< I8 Vvheaw. (4=15)

Now, consider the Jo-problem defined by § = DJ(3°). Using Definition
3.3, this JQ-problam is admissible by hypothesis 3. Therefore, by
Theoren 3,2, a minirm point of JQ exists, Let #* be such a points
thet is,

BN I®)  vica. (4-16)

Following an argument of Dem'ysnov and Rubinov in [4,1], it will be
shown thst .

38 = 28 - (417)

‘Hypothesis %) indicates that the agsumptions of Theorem 3,1 are satis-

fied; thess acssumptions are the smme as the hypotheses of lemma 4,13 so
the Lemma is valid, Using the finite increment formuls in this Lemma,

it follows that:

J(8° + y(B8% - 8°)) - 3(8°) = ¥(DI(3°), &* - 2°) + oly) ,
(4=18)

where 1linm °(")ao.
7-00 Y

The convexity assumption on & insures that 80 + y(8* =~ §9) 45 in
&. Then, since J is minimized at 8%, the left side of (4-18) is non~
negative for all v €[0, 1]. When v is mll. the sign of the right
side of (4~18) is determined by the first term; so

(D3(8°), 8* - 3°) >0, (4=-19)

or (D3(8°), 8*) > (D3(8°), 8°) . {4=20)
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. Using the definition of Jq to rewrite (4~20), we have:
. Jo(8%) > gg(e0) b (4=21)

Combining (4-21) with (4=16) yields (4~17).
By Theorem 3,2, the point 8* which minimizes JQ/ is unique; so
8* = 8°, From (%-15), i el

)< I@B) Vviea.  (4-22)

Thus 8* 18 a =i

4 = DJ(8*) = DJ(8°) is equivalent to the J-problem by Definitior.xﬁ.é.b |
The proof of part 1) of the theorem is thus complete,
2) By the sdditionsl given assumptions of part 2), a point &% ¢ a

" extats such thats-
| ég‘ﬁ*) = (38", #) < @Y, ) = Io(8) (4-23)

for all 8 € @, Part 2 of the theorem will be proved by contradiction, |
following an argument of Dem'yanov and Rubinov in [4,1],

Snpposa that 3% is pot a minimum point of J, That is, & point
éca eﬁsts such that

J(8) < 3(&*) (4=2lt)
Using the lLagrangs formmla in Lewma 4.1 with y = 1 and 8 = &%, we havei
with B €[0, 1], Form the function ACH TR

- gg) = J(s* + B8 - 3"’)) San Eroo o Tes 0 (4.26)
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Then, by equation (4=8) in the preef of Imc b,1, the derivative g'(g)=
() axists and 1s given by the right side of (i-25). But g(8) 4
convex function of B, since J was sssumed to be & convex functional.

So g’(8) is monotons rondacreasing in B, and

g’(8) = g’(0) . (4-27)
Using (4=27) in (B=25) results ins

J(8) - 3(8%) > (DI(a*), & - &%) ., (4-28)
Combining (4=24) with (4=28) yiol;iﬁ

(pJ(8*), 8 - &) <0, (4=29)
Cor (DI(5*), 8) < (Di(a*), 8% . (4-30)

Bat this is a contradiction of (4-23), and so ¥ must be a minisum point
of J. This proves the second part of the theorem, and the proof of
Theoren 4,1 is complete, Q.E.D,

Theorem 4,1 is useful in that it gives conditions on a Jeproblom
that insure the existence of an squivalent Jqopmblm. If these cbndi-»
tions are satisfied, the algoritims described in Chapter 5 for setually
finding the equivalent problem can be applied, Then, if a point
#" € a 1s found using the above computational methods, and satisfies
the conditions in Part 2) of the theoram, it is the desired solution to
the J=problesm,
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) Inthia amm, mminmporti.oa of the sets o wdaq (deZined
in Chapter 3) are derived, These pmparties are useful in dﬂbemiuing
whether g particulsr J-problem sata.ai’ioa the hypotheses of Theores 4.1.
and also yield additionsl insight into the nature of the Ju and Jo-
protlems, Ths results are summarized in the zonuéig theorems

Theorem 4,2
If @ and aq are as defined in Chapter 3, and if, for every
K(t) € Uy, the response vector r(t) 15 a random process with finite and
ronsero , viwa S R LT S
1) the mll element 6 ¢ oy
" 2) Af 8 € @, the corresponding covarisnce matrix S is positiva gomi-
dofmtm
3) & is contained in a half space in oy
4)  at every point 3% €.ag, s supporting byperplane to'c existe;
5) &g 48 on the boundary of @, , .

1) The only.way that the mill element 6 could be in « is if an element -
By = [85(17), 85(t)] € o:womld exist, such that s,(T) = 0 and gg(t)'= 0
for a1l t€[t,,T]. But this is impossible, sinece it was assumed that

the randem vector r(t) is a process:with zerc mean and a nontero viriance
for every K(t) € Uy, So 8 f &, a3 was-to be proven, This result simply
means that a trivisl responss vestor (identically sero) is excluded from
consideration, )

2) This statement follows from the well~known faet that any covariance
matrix is positive semidefimite (see, ©.g., Gnedenko [4,3], p. 200),
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3), &), 5) The last threeo results follow directly from the interpreta-
tion of the Jgdprohlmn given in Theorem 3,2, Pick a point &* € g
and econsider the Jguyroblem which yields that &%, and is defined by

4 = [qp, a(t)]. That is,

Jo(8*) =@, 8%) < (4, 8) = Jy(8) Vicw, (h-31)

The following two definitions are needed {o contime tﬁe proof,

Consider the representation of the Jg-problem shown in Figure 4,1,
Dofine the hyperplane L{§) in ths following way:

Definition 4,1: A point & is in L(§) if and only if (§, 8 - #)= 0,

Then L(3) divides ¢ into two half-spaces, o¥ and o=, defined as
. followss |
' Doﬁni:tion 4,2: A point 8 ie in o* if and only if (§, & ~ ﬁ*) > 0,
and & is in o™ if and only if (§, & - #*) < O,

But now by (4=31), 4f 8 € &, then (§, 8 - 8*) > 0; 80 8 € o*, Tms
a < o*, and part 3) of the theorem is proved, Alse, L(§) is a suppor-
ting hyperplane to « at 8%, since 3* is clearly in L(§) end @ c o*, So
part 4) of the thecrem is proved.

To show that o is en the boundary of &, it must be shown that,
given a point 8 ¢ Gqe Overy neighborhood of & contains a 'point not in
. Consider the point 8% mentioned before, and define the follewing
B~nelghborhood of 8%

Ny (8%) = {18 € oy and [|8 - 8o < 8} (4=32)

Choose a § > 0, and consider the point Sy (where it is assumed that

fidlle > 0)s
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ny.ae-ﬂﬁrg , fory € (0, 8) . (1-33)
Then 3.,, € 0, and
e R
_ ﬂay - 840 T 7! (hfﬁh)
80 37 € 33(3‘). Bat

- A
(4, 3’, 8*) = (§, W)
- (4-35)
= -y ||glo
by the definitien of the norm im (3-11). Since ¥ > 0 and {|§v > 0,
4. 37‘-"3") iz negative, and so ﬁ,. is in ¢” by Definition 4,2, Since
@ cot, it follows that l,’ € o, The above construction can be carried
out for all p > 0, and so 8* is on the boundary of @, This completes
the proof of part 5) of the Theorem and thus of the complete Theorem
k.2, Q.B.D,

bb Compexity of o
An appreoach to detemmining the convaxity of o is discussed in this
section, In this discussion, let « be defined as follows:
8:3(t) is the solution of the deterministic
am= {g\[x:m (3-1) to (3-4), given a K(t) € Uy, for } '
(4=36)
which is similar to the definition of & 1A section 3.4, except that the
set of admissible feedback coefficients is nows

= o [K(t)sthe elements of K(t) have contimous
-ﬂx : derivatives :n [te.T]. } . (=37)
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Consider the specisl case in which the A, B, C, and D matrices in -
(3-1) to (3-4) are constent, and the measurements of the state mr
are axact, so that B (t) = 0 for all ¢, Then the system covariance
equations becowes |

8(¢) = [C = DE(R)IC_()C’ - K/()D°] )

where ﬁx(t) is the solution of:

dcx(t) . N ’ , ‘ C t ;
go— = [A = BR()1C,(0) # Cp(e)[a - K/(2)B'] + K(t)

(#=39)
with initial conditions
Gt =Cy o (520)

(!lotethathmx(t)sx 1sa&msmnnndmvectorvithmmn
and covariance matrix C_ .which is wmodtobemnsinguhr). |

V ro ebmtthata is com. ﬁ.ut ohooso arhﬂ.tra:walmnbs 8 and
8, from o, and form the. m-mt%.a
YRR A0 B 4B, o A€ (0 1),
Frem the definition of 8§ in Section 3.4, it follows that the covarisnce
matrix corresponding to 8, is glven bys

LB = Qs @ rAs®, G

whore sl(t) and S (-t) correspond to 8, and 32. For convexity, it met
tbn‘uo mmz ﬁ,‘ia inw. From the correspondence betwoen ax and
Sl(t). this is true if and only if there exists a feedback coefficient
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K (t) € T, such that K, (t) m«# 8, (t) when used in equations
(5-38) to (4=b0),

The proof of the existence of such a K, (t) is montrivial, because
oquations (4=38) to (#-40) are morlinesr in K. One method of proof
begins by constructing & differentisl oquation for S(t), This oan be -
done ¥y ‘differeniiating (4=38) and substitating (540 and (-39) in
the result (ssmming that [c - DE(t)] is square and miasm-r).ﬂyiold-
ing:

as(e)
at

‘1 2

— - 8(t)C - K'(t)D'] K‘(¢)p’

- DR()C =~ (6L a(e)
+ [C - DE(£)I[A ~ EK(£)ILC - DE(£)]™2 S(t) (@z)
# 3(£)[C'= K’ (£)D'T7MA’- K (£)B'IC’- K’ (4)D"]
+ [C = DE()Hg(t)C"~ K ()]
vhere S(t,) = [C - DE(t,)]0e,[C"= K/ (4,01, (t3)

Assume that | ;nd izhufohunchomfmnu. Ihonthopropd-biesof
S, 1t

8,(¢t) ema f%%- ars well-defined through equation (U=41)., Suppose .

now that equation (4-42) can be solved for i(t) to form the following

-

L) - wtxe), sce), 3001 (teas)

with K(ty) = K, (4-45)

defined by (%=43), Then, if a K (t) exists which produces §, (t), it
will be defined by (4-44) when S, and §, sre substituted:
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o

with thte) = Kkb ® (W)

® B
— = K (), 8,(t), § (£)] ,  (4-6)

The proof of comvexity of o then redaces to the problem of showing
that a solution to (W) exists and is inf&,gim the pmpoﬁiu of
. N :
SR and Sa. The following secalar mmply gives sufficient eonditiou |
ﬂut‘thoﬁl defined by (L-I1) is an element of o, given two points in
@, § and 3,, vhich satisfy given conditions,

Example of Convexity Proof
Consider the scalar dynsmic system with state x and control ws

= x(t) 4 ult) , (4=48)

 ax(t)
-
with x(t,) = x, - (459)
od  Ex)=0. ! (i50)
T@g responsse 1s
r(t) = u(t) , - (4=51)

and 1ot the moise voriamse ny(t) = 1.

Under the above assumptions, the system A, B, and D matrices reduce to
anity, and C = 0 (refer to the generel system equations in Section
2.2)s Therefors, (4-38) to (4-40) besomes

a(t) = 17(2) o (t) (4=52)

8, (t) = 2[1 - k(t)]e (t) + 1, (4=53)
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with ‘_ ex(to) - S = @::J . ~ (b=5l)

Following the method outlined sbove, a differential oqution tor
. 8(t) given k(t) will be constructed, Riret, differertinte (4=52)s

Bt) =k (t)c (t) + 2(t)k(t)e, (8) o (u-ss) o
Then miltiply both mm of (4=55) b:r k(t) and sums.tut. (u-sz) and .

(5-53) %o elimirate o

ds{t)

k() S22 ztk(t) K2(t) + k(t)]a(t) +k3(t). (56)

with s(t, ) = i (ty) ey o - (4-57)

+ Hote that if k(t) = O for sdme t, a(t;) is not defined by (h-56il but
then s(t) = 0 by (4-52), S

Kow, ehoou llandf from ooy then the aomapondug time functions
are 8 (t) and 8,(t), Form ﬁ(t):

B = Q-0 B 4x H®, 2EOD . ()

Thep, Af & k, wiich prednoss s, exists, it must be defined by the
following differential equations

) |
@ 3 2 (% (t)*kx(t)]ll(’c)-i-kla(t). (n.,ss)
with 5&)«5&)«”. | (4es0)

Tae fusobions 1,(4) and g are well carined by (439) o
A is chosen, So (H=59) can be rewritten to define k, more explicitly:

-k (¢) 2y 3
B il S AOR S WORE 10 (OIS (4-61)
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(t, )3
where k (ty) = [51 ] =lne ¢ (=62)
3, (t) - 2a (8) 2 |
_and g(t) = iﬂl(t)_. s ¥(t) = = —29:&7 ° (4-63)

The hypothesis of Theorem 4.2 is assumed; mamely, that the response
r(t) has & ponsero variance for all tE[to.‘lfJ. Thus sl(_t) > 0, and
B(t) and y(t) 1n (h=63) extst. -

To find the ‘ooﬁit:lon;z under which & solution to (4=61) exists on
[t,+7]s the Cauchy-Peano existence theorem will be used (see, 6.g.,
Coddington and Levinsen [4.4], p. 6)s

Theoren (_c.im-m)
Considér the differential squation:

- LE LR |

(8)

whare x(to) =X, .

If £ s comtimons in ¢ and x on the restangle R (defined by

It = t,] S & |x=x| <D, with a, b > 0), then there exists a sclution
® € Clof (2) on [t = t,] < I, for which g(t,) = x, (I = minla, b/M],
where M = max|f(t, x)| on R).

Applying the above theorem to (i=61), we see that f is comtimwous
intandk for [t =ty| ST, |k =k, | Sb, forall b> 0, Fora
gimb.uhn:ru(&-él)t

[£(t, )] = [B(EDg (620 6oy (e 3(2))|
, ()
< B, Ik () [+, () [ By i, 017,
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where . = B T (e5)
"tetoo] ‘

amd Yu ly(ed} o 2#—’66) -
: [ 00 1] . L

llotothatp mdy'mst,beemue‘(t)‘ﬁ&x(t) are gimtiu
functions oontimona on [t +T]. Also, since |k =k | < b, and -
kl >0. ﬁ.tonewnthat gl € b+, B0 (4=64) becomess

}t(t‘aﬁ)l B rl )+ (bl ey ek )
" (4=67)
L H(b) ®
where ¥(b) is now the upper bound mentioned in the above Theorem (given
. & particular b), Fow, form o

§(®) = gy (4-68)

Then, by the theorem, if a "H® exists such that g(b) > T, the solution
of (4-61) exists over [to.’!.’]. To find such a "b*, azsume that s, and
3 are soh that f, =y, =k _ = 1. Difforentiate (4-65) and set the
rosult equal to sero to find b > O such that g(b) is & maximum

M(b) - BM'(b) =0 , (4=69)
Rewriting (4=69) and using the given mmbers results in
e i3m0,

which has a real voet of b= 0,740 (the other two roots are imaginary),
For this valwne of b, g(b) = 0,0739. Therefore, by the Cauchy-Peano
Theorem, & solution k, (t) to (4-61) exists for all t€[t,,t, + 0.0739],
So if T < ty + 0,0739, the solution exists over the whole interval of
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Anterest, Furthermore, then k, (t) has a contimous first derivative,
and 50 1t 1s & member of Uy by (4=37). Tius the 8, which results from
using k, in the system equations is'a member of @,

It should be noted that the result holds for all s such that
B =Y "1, =1 Tatis, ifd), 8,¢€a yield an s, with the vcboje
propertiss, the *line" joining S)_ and 82 is also in o, So the sbove
exanple demonstrates the method of proving convexity outlined previously,
and shows comvexity for the portion of o satisfyling the above conditions
on 8 and ,, o
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"CHAPTER 5
‘COMPUTATIONAL ALGORITHMS

5.1 Introduction

In Chapters 3 and 4 if. was shown that the problan of minimiging -
the porfomm 1ndex J(ﬁ), 3 E a. eauld bo vimd as a problem of
ninhitim a mnlinear fumtioml on a "sot of attainability” o in the
Kilhort space o (m the mtmmt of the General Pmblel in Section 3.4).
Itwu a:m shownthatais m‘h t.hewhele space o, and that a linear
fnnctioml Jq(i) "@qaiml&nt“ tod (&) .existed under aort.a.’m conditions

“on J. In this ehapm, o algoritluu. the perturbed gradient method
(PaM), and the d:h'wh gradient iterstion method (DGIN), for minimising
the JQ'-Mioml will be d‘@?ﬂbﬂdu

Tho pmblen of min.’miains a mnetional on a constraint set. in
!.hmt:\sn splce lns boen diamuud by other mthort. Blum, for example, .
oonsiders in [5.1] the ni.niniution of a functiomal subject, to equality...
constraints. Balukrislman [5.2] uensidars & special type of minimum-
nora pmblu. undor a control ‘energy comtraint.. using a steepest-descent
-athod In hoth ot the abwo problems, it is asmod that an explicit .
uprnmn for tho comra.int eguation is known,

The alaontm dimsaod in this chapter dﬁ.i’far fm the above
uthodl 1n twc wm mm. o uylﬁ.cit upmsnion for the constraint .
m«isroqnimdinths mmmmagonum Second, the objective .
of thn itcution nothoda is to find the equivalent Jqopmblu. .This
problem then defines the miniwma point of J, Another feature of the
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algorithms dlscnssed is that they make use of the known solution of
the problem of minimiging the linear functional J Q'

In ths following discussion, it is assumed that the hypotheses of
Theorems 3,1, 3.2, and 4,1 are sstisfied, Additional hypothsses will ‘
be required to show convergence of the PGM algorithm, and these are

listed in Theoren 5.1.

5.2 Direct Gradient Iteration Method !DGIM!
The dirsct gradient iteration method of minimiszing J(8) was

devised by Skelton in [2.4]., The method was not viswsd by Skelton as
ons in function space, but this iztorputat:!.én is useful to relate DGIH
to the other algorithm to be discussed in Section 5.3,

A block disgram deseribing DGIM is shown in Figure 5,1. The
notation is the same as that in Chapter 31 the vector §, € o defines
a Jq-problo‘n; the solution to this problem is knpwn, and is the optimal
fesdback coefficient matrix K *(t). This coefficient, used in the dy-
namic system equations, defines an optimal oovariancol matrix and thus
defines 8,*. In Figure 5.1, DJ(8;*) is the gradient vector of the
Mikmld’atthopointﬁi*eco

' The theoretical motivation behind this algoritim is the require-
ment that the necessary conditions for eguivelence, given in (A-1l), bo ‘
sstisfied, The algoritim tries to brimg this condition about by "brute
foroe®, by letting §,,, = (1-¥)d, + YDI(8;*), where ¥€[0,1] is
chosen during each iteration on the basis of engineering Judgement,

A sketch of DGIM as interpreted in g-space is given in Fignro 5.2, The
iteration sequence begins with an arbitrary veetor, §,s and contimes
as discussed previously,



mk ﬁo = DJ,

) L
Solve ﬁi Problem,

yielding K*(t) [ T

3 Giar = (1904 + yDI(5.*)
Find 3,* resulting i 4 + 703G,

‘ .
4y =ity 1 Yl

fros  E,*(t) }

T

Figure 5.1 Direct Gradient Iteration Methed

Figure 5.2 I)Gmyin O=gpace
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e essential feature of the method is that gradient vectors are
the quantities iterated, instead of méeeésive points in o, as is the
usual case, So a proof of convergence of the algorithm mst show that
the sequence of vectors §; “approaches" (in<$ome ‘sense) the gradient of
J at its minimum point, assuming such a point 'oxigts. No such conver-
gence property has been provﬁd to date, -However, Skelton has used DGIM
succossfnlly an Py mber of practical problams, in the sense that it led
to "good" ‘feedback eoofficienta E(t) (see [z.a]). A‘Lso, the algorithm
was clearly shown to comverge in the fiest axamp_le “deseribed in Chapter
6, These results indicste thst the ‘algarithm' is & useful one in certain
cases, It is a simple one, and is emmﬁatiom]lj rapid cqmpared to
. the perturbed gradient method disocussed in Segtion 5:3. However, it
seems to require great care in its use due to its inherent unpredicta-
bility, - . . - S

5.3 Perturbed Gradient Method (PGM)

5.3.1 Deseription of the Msthod

The porbnrbed gradient method described in this section is an
application of an algoritlm developed in a paper by Dem®yanov and
Rubinov [4,1]. In this pape;", the suthors consider the problem of
nirﬂniﬂng a convex, differentisble fanstiomel on & convex set in a
Banach space, The intrinsic feature of the Dem‘ymnov elgorithm is that
it uses the (lmown) solution to the problem of minimizing a linear func-
tional on the constraint set to minimize the (in genersl) nonlinear
functional, This feature mekes the method immediatsly applicsble to
the problem of mimimizing J(8) on the constraint set @, since the solution
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to tt” ?mblen of minimizing JQ on & is known,

'The name "perturbed gradient method" was taken from an earlier
paper by Dem*yanov [5.3], in which PGM and other algoritﬁms Wers desw
eribed in Euclldsan space, These other slgorithms could eonceivably
bs applisd to the more general cé.ss. tut since they are much mors com=-
plicated than P@, their usefulness in practice may be restriocted,

The PGM slgorithm is general enough té include the vase in which
the minimum of the functional cccurs in the interior of the constraint
sot; however, in the discussion below, it is sssumed that the minimum
occurs in &, (as mentioned in the Introduction to this chapter). The
complete set of assumptions under which this algorithm is to be used
~ will be listed in the convergence theorew, Theorem 5,1, Thess assumptions
‘Wﬂ.l be dis;msssd when PGM is spplied to the examples in Chapter 6,

A block diagram desoribing PGM is given in Figure 5,3, The notation
used is the same as that in Section 5.2, As can be seen, the stopping
condition is the same as that used in DGIM; neamely, that the gradient
vector of J at the ith solation point be equal to the vector defining
the ith Jo-problem, That is, the equivalence theorem (Theorem k1) is
again invoked, In practice, of course, it is difficult to make the two
vectors equal; however, the porm of the distance betwsen the two can be
made s smell as desired, within the limits of computatiomal accuracy,
This problem of the stopping comdition will be discussed more fully in
Chapter 6,

The PGM differs from DGIM in that points in the constraint set o
are the quantities iterated, instead of gradient vectors. The geometri-
oal significance of the algoritlm can be seen from Figure 5.4, An
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arb*wgnggy point in @ is selocted as the starting point, This point, &,
can be chosen by selecting an arbitrary admissible fesdback coefficient,
K (t). Then 8 is defined by ths response covariance matrix which results
vhen K (t) is used, The gradient vector at 8, then defines a “quadratic”
problen § , which i8 solved using the known formules to yield K *(t),
This feedback coefficient K,*(t), when used in the system equations,
results in the point 30* € o, Geometrically, solving tho &o probleon

for B,* corvesponds to finding the point in o which is the “farthest®
on® in the divection of the negative gradient veotor, This operation

is shown in Figure 5.4 by the orthogonsl dotted linss. A "straight
line" in ¢ is then drawn connsoting 3, and 8 %; the next step in the

. Aterstion is finding the point on this line at which J(8) is & winimm,
Computationslly, tids 18 accomplished by “walking” along the line and
sanpling values of J(8) along the way. The sssmmed conmvexity of J(8)
assures that the minimum point is umiqgue; so thls point can be dotermined
as accurately as roquired by teking smaller incremented steps slong the
line, The existence of such a minimum point other than 3° itself will
be discussed in Section 5.3.2. Ones the point is determined, it bscomes
the next iteration point al. and the iteration is contimuied by repeating
the sbove procedurs. In general, if the ith iteration point is 31. the
next iterstion point is defined by

J(ai:l-l)“l eﬁ? 151[ (1 =1)8 +1 8%, (5-1)

where 8,* is the minimum point of the ith Jy~problem, which is given

by 811 = DJ (ﬁi). Fote that equation (5-1) specifies the new iteration

point 8441 automatically.
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i, 5:3.2 Convergence of the Method
The ves of the perturbed gradismt method (PGM) deseribed in Section
5.3.1 results in a sequence of points {ﬁi}, 1@ 0,1,25000 ina. In
this subsection it will be shown that the sequence {J(Bi)}, 1= 0,1,25000
converges to J(8%), the mintmum

velue of J on &, The proof of conver-
gence is based in part on a theorem of Dem®yunov and Rghix;o'v in [4,1].
Hote that the convergense discussed hsre is counvergence in the perfoxﬁam&
index J, snd mot in the ssquence of feedback coefficients {K,(t)} or the
sequence of points {@i}. 1= 0,1,2y000 » The results are swmarized in

" Thoorenm 5.1, which uses the fLcllowing defimition:

| mt,gggm let 8, € @ bo the starting point of the FGM
. algorittm, end ag be dafined o5 in Section 3.5, Then defimes

unm.WWMofaQu§0 ¢

-3

_ {mﬁ wm (1 - k)él ¥ A 8, fox Hy and az} .
in “Q §) g@, end A 6[0. }«J

The theorem then can be stateds

Theorem 5.1
Assomes
1) the hypotheses of Theorem 4,1 holds
2) J is & convex functionaly
3) aq is boundeds
%) DP3(8, §) (defined in equation (3-22)) is bounded for a1l & € ay
and all & € v with boandad normg
5) the perturbed gradient method is defined as in Section 5.3.1, and
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generates a sequence of points in a, {ﬁi}, 1= 0,1,2000 »
Thens

1) the sequence of values {J(ﬁi)}, i=0,1,2,..., corresponding to
the shove {§1} sequence, is monotons decreasing;

2) Lin (9G,), 8% = 5,) =0

3) 1im J(&) = J(8°); that is, the PGM algorithm converges to a
mtotmn point 8 of J, '

Proof
1) It wust be shown that J(ﬁi*i) < J(%i} for an arbitrery $;. To
prove this, choose §, end let §, = DJ(3,) defins the ith quadratic
problem, Assuming that J(8,) # J(8°), this quadratic problem can be
- solved, ylelding &,* # 8, Let

8, = si + 'y(si* - si), v €{0, 1) . (5=2)

It will be shown that a v exists such that J(‘éiy) < J(§i). Hypothesis
1) indicates that the assumptions of Theorem .1 are satisfied, Since
these assumptions include thoss of Theorem 3.1, the hypotheses of Lemma
k.1 hold, and the Lemma is valid, Using the finite increment formula
in the Lemma, it follows that:

chi s 7(§i* - §i)] [ J<§i) = ‘y(DJ(gi)y gi* Al gi) + 0(7) PS
(5~3)

Since 3:1.* is 2 winimum point of the §;-problem, it follows that

(D3(8,), 8y*) < (DI(8y), 8) (5-4)
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for all 8§ € @, In particular, (5-4) holds for & = 8;. BSo
(DJ(§i), §i"‘ - §1) =}< 0, (5=5)

vhers M 1s soms positive real mmber, Note that the strict inequality
holds in (5=5); if it did mot, then we would have

(DJ(gi)u gi*) = (m(ﬁi)y gi) ® (5"6)

“hat is, 8; would be a solution of the §,-problem defined by ;= DJ(8,).

But then by part 2 of Theorem 4,1, 8, would be & minimum point of the

Juproblem, and J(&;) = J(&°), Since it wae assumed earlier that

3(8,) 4 J(8%), it follows that the strict inequality holds in (5~5), .
Uging (5=5) in (5-3) results ins

I8, + y(B* - 8)] = 3(By) = = My + 0k) . (5-7)

It can be seen that a 2] €(0, 1) can be found such that the right side
of (5-7) bacomes nega,tive. For this Yy (5~7) implies (using (5-2))
thats

J(Bi,yl)s IE; + ‘yliﬁi* - 31)] < J(§i) . (5-8)
Using the definition of gi-ﬂ, in (5-1), equation (5-8) becomes

Hoyyy) = min 9, < IRy, )< IE) . (59)

b4 @(0;1)

and part 1) of the Theorem is proved,

2) Since J is bourded below on a (by the assumption in Theorem 4.1
that & mintmm of J on & exists), and since the sequence tJ(ﬁi)} is
- monotone decreasing by part 1) of the Theorem, the limit
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Lm J(8)=L>-w (5-10)

e A

exists,
Equation (5-1) defining PGM ecan be written

Sayyg) = min &S+ VG -8 (5-11)

from which the following inequality holds for ¥ €(0,1):

I(8i49) < Jﬁﬁi* + 7(31 - 31*)3
(5-12)
= J[Qi + (1= 7)(E* - éi)J
Using equation (4-3) from Lemms 4,1, (5-12) becomes:
3(8y,0) £ IGE) + Q= 9)DIG,), 8% - 8,)
(5-13)

2 2 - Y ] & Y
+ %'(1 el Y) (D J(§i+ 5(81*"‘ Si)isi*‘ si),si*- gi) $
where 8 €[0, (1 - ¥)],
By the Schawarz inequality,

2
(D J(gi + 3(35_* - §i)' gi* - Qi)' gi* - gi)

(5=-14)
< 10%5(8y+ B(B,*~ 8,),8,%- 8o + [18;%- 8o
where || ¢ [jo is defined in (3-11).
Tt will now be shown that the right side of (5-1l4) is bounded for
all i, The point 3, + 8(8,* ~ 8,) is in oy by definition 51and the
construction of 3i using the PGM algoritlm. So, using hypothesis 4),

the righ‘h side of (5-1%) is bounded if "gi* - &;llo is bounded. We haves
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l3,* - 8,llo < 18,4l + [18,/lo (5-15)

Since 8,* and 8, ave both in ay for all 4, it is then sufficient to

show that @, is bounded, If 8 € oy then (using Definition 5,1 and

the triangle inequality)s
Hallo < llgyflo + nallo , (5-16)

vwhere 8, and 8, are in §_ U @ge Bubt 3, is a single point and q 18 bomnde
(by hypothesis 3); so ay; is bounded, and (5-1%) can then be rewritten:

O%3(By% B(By*- B,)08,%- 8),8,%- 8) < N<e  (517)
for some positive real N, Then (5-13) can be rewritten:
I(81) S 98+ (1 - ¥)(DJ(5, ) 8, %~ 8) + 30 - _y)z "
(5-18)

= J() + (1 - yII(DI(3y),8;% 8,) + 31 - ¥)N],

for y €[0,1).
Note that, by definition of the element &i*, we haves

(DJ('éi), giﬁc bl gi) S' 0' i= 1’29000 ° (5"’19)

Suppose now that part 2) of the Theorem were false, Then a seqUence
§1k and a p > 0 can ba found, such that

(DIE,), 8% = 8,) € -p <0, k=1,2,00s (5-20)
In this case, (5-18) bscomes:

JoE )< J(%ik) + (1 =y)=-p+ 31 - ¥)N] , (5-21)
le#
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Passing to the limit as k % o, we haves
LEL+ (1 =y)ep+ 41 -y, (5=22)
or, since (1 = v) > 0,
wp+ 31 -yW20, (5-23)

But (5-23) doss not hold if ¥ is chosen such that (1 - y) € 2/8, So
& contradiction results, and the second part of the Theorsm iz prov:d.
3) By equation {4=3) of lLemma 4,1, for any 8 € o we can write:

J(8) - d(8;) = (DI(8y), 8 - 8,)

. (B2it)
+ H0%(8 +B(E - 8), 8 -8, (§-84,) .

Since J is convex, the second term on the right side of (5-24) is

nonnegative; so

I(B) - (3;) 2 (IE), 8 -8,) . (5-25)

Taking the minimum (in &) of both sides of (5-25) on @, and remembering
that J is minimized at 3%, we havoy

J(E) = 3E,) 2 win (DI(E,), B~ &)

8&w (5-26)
- { [ £ o L B
= (DJ(8, ), %, ﬁi) .
So
= 2 3 %) % JHB ) w J(B° 27
(D3(3y), 8y - 8,%) 2 J(3,) - J(E) 20, (5-27)

From part 2) of ilLe Theorem, ths left side of (5-27) goes Lo zero as
19 e, So part 3) follows from (5-27). Q.E.D.
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The above Theorem iz useful in that it guarantees convergence of
the PGM algorithm if the hypotheses are satisfied. As\ mentioned before,
no such theorem is presently available for the DGIM algt»ritha, In that
algorithm, the sequence {J(éi)}, L= 0,0,4es 18 not oven momotons de-
ereasing (in gemeral). The computer results described in Chapter 6
veorify the momstonieity of the J(Qi) sequence when PG is used, while
the Dﬁm resulis ars more eryabiec,

Theorem 5] is an additional demonstration that the function zpace
formulation is a useful ons, The formlation led to the development
of the PGM, and also allows the funstion space iesults of Dem*yanov in
[%,1] to be applied to the above corwergence proof,

5.3.3 Comments on the Method

The PG algorithm has cortain points of similarity with the itera~
tive procedure of Gilbert [5.%4], In the case in which J(8) is 2 quade
ratie form in s(T) and 8(t), the two methods are identical (except thet
Cllbert’s method is fommlated in Buclidean spsce instesd of Hilbert
space), Neither method requires an explicit expression for the cone
straint set; sll that is required is the availability of a method for
solving "linear programs® (Gilbert®s term) on the comstraint set, This
solution of a linsar program is Gilbert's "contset function”, and corres-
ponds to solving the Jp-problem in PO,

Computationally, the mein problsm in PGM 1ls finding the minimum
point along the “1ine” connecting Eéi and 3{% The repsated evaluation
of J(8) involves computation of an integral (see eguation (316)), and
may bs time-conswming, Some methods for decreasing the time and storage
required to evalmate J(2) ars deseribed in Appendix G, The resuits in
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Chaptor 6 show that P@®I takes at least twice the compater time of DGIM
pai' iﬁemt:\.em Hm@mm P@i is more dopendable, ginoe the successive
valoes of ﬂm pmfi‘@m@@ mﬁm are always decressirg, This makes PGH
mere efficient in terms of speed of performance index minmimimstisn.
\élm, P@ is curs o cowverze if the conditions of Theowrem 5,1 ave mady
no ;mmk aszaranee Lg aveilable for DGIH,

* Hote that the guantity of interest in the solubion of the Jeprobilem
is the optimal feedbwmek cesfficisnt K*(1). Both the PGM and DGIN
alporithms give & rovoptimel .fmdmek eosfficient Ki(t) at esch iteretic:
step, This festurs is important in enmginsering applications, since a
truly optimal cocfficlient may not be of interest, In this case, the
iteration will only bo contimed wniil Kii‘%:} gives “&Qeap‘tébla“ systom

.

perforuance whon ueod in the system eguations,
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CHAPTER 6

COMPUTATIONAL RESULTS

6.1 Introduction

The PGM and DGIM algorithms discussed in Chapter 5 were applied to
two gtochastic control problens, and the resﬁlts are summarized in
this chapter, The first problem considered is that of controlling a
pure inertia, which is disturbed by filtered white noise, The perfor-
mance index in this example is the square of the norm of 3€u, whers §
(defined in (3-15)) represents the system response covariances, The
r'sacond problem considersed is that of reducing wind-gust effacts on a
large missile during the boost phase of flight, The performance index
used in this example is one derived by Skelton in [6.1], and is an
upper bound on the probability that certain system responses w;ll
exceed their given bounds, Because of computationsl difficulties with
Skelton's performance index, a new performance index that “matches®
Skelton®s in a certain conse ls introduced. The PCGHM algorithm is then
applied to the problem of minimizing this index to get good load-relief
controllers for the launch booster, |

The algorithms were programmed in Fortran IV to run on the IBM
7094 (first axample) and the CDC 6500 (second example) computing systems,
A description of the programs used and some computational techniques
are given in Appendix G,

The computatiornal results indicate that PGM is a mors dependable

algorithm than DGIM, since the sequence of values of the performance
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index that it gensrates is monotone decreasing, In the first exampls,
however, PGY takes about twice as much computer time to run (per iteras=
tion) as does DGIM. In the second example, the two algorithms take
about the same amount of time, The successful use of PGM in the second
example shows that it is applicable to high-order systems in practical
problems. The second example also displays a "suboptimal® approach to
Skelton's load-relisf problem, and indicates that usef‘u;.‘. controls can

be genérated by PGM and the supporting function-space theory.

6.2 A Minimum Norm Problem.

6,2.1 Problem Statement

The stochastic system to be considered in this section is assenti-

»

ally a pure inertia (or double integrator) disturbed by filtered white
noise, A block diagram of the system is shown in Figure 6,1, The filter
' input, nl, and the measurement nolse, Wl and wz s are white Gaussian
noise, The systen oubput, €, cs;n be considered an angular displacement,
é angular rate, and 1 the moment of inertia,

To put the system equations in the form given in Chapter 2, identify

the vectors x, v, and r as follows (the subseripts indicate vector

components):
[n=t M=o m=Ex
x, = ] v, = 0 r, =X, (6~1)
X, = 11 v.=1n r.=1u

3 2 3 1 3

The measurement vector z is given by

ExR Y

2

(6=2)
=% 4w
2

2 2
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nl--——.l

Filter

1 |z Ao e 1

T+s + is s
+ % U0

Estimation and

Control Legile

Figure 6,1 Pure Inertis System
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The noise vector w has components Wy and Wy a8 shovm in Figure 6,1,
Using the above identifications, the dymamic system equations sres

x =x, (=3}
%, = (x, 4 /T (64)
N 2F + . 6«‘[‘}
xB x3 v3 (65

Note that the contrcel u i8 & sealar, and the state xB

output of the noise filier, For definitensas, the following paremeters
will be useds

is the

T = 100
2
EE‘VB(%)J = ng
2
E[Wi(ﬁ)] = 0.l, 1=1,2,3
t'o = 0
T= 1{39

Using theses mmbers, the parsmeter matrices are ss followss

i faad

0 1 © G 1 ¢ ¢
Aem 6 000l B= j0,0LLC=}{ 0 1 0 ],
0 0 =1 0 o o6 ©

ten

i 0 0
De= ] " o= 0 i o ]
1

o J
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and the nolse covariance matrices are 'spacified by

r’
0 o 0
N=| 0 0 0
Vio 0o 1

The performance index to be minimized is the 3quar§ of the nomm of
the element § in the space o, That is,

J(8) = 4(8, 8)

i

3

1s(Tyos(T) + % f; s{t)es(t)dt
(]
Minimizing this indsx can be interpretsd as reducing the effect of the
disturbance noise on & and 5, while pu'tf;ing a penalty on the contrel u,
The problem to be solved is then the general problem discussed in
Section 2.2, using the parsmeter matrices given above and the perfur-
nance index in (6-6), Tt 15 to find the u € U (dofined in (2«9)). such
that J(8) in (6-6) is minimized, subject to the system equations (2-1)
to (2-8). In geomeirical terms in function space, the problem is simply
to find the feedback coefficient K¥(t) that produces $%, the element
»f minimum mm in & (the set of attainability).
Since the PGM algordithm will be applied to the sbove example, =
few comments will bs made concerning the hypotheses in the theorems
lerived in Chapters 3,4, and 5. Theorem 3.1 requires that J(8). be defined
Por évéi& 3 in o3 this is certainly the case for the J in (6~6). Compar-

ing the definition of J(8) in (3~16) with the specific J in (6=6) yields
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the following expressions fop fl and fzt

fl{s(T)ZI = $8(T)ss(T), rzts_(t)J = 4a(t)ss(t) - (6-7)

of, a2y
Using the definitions of == and ~w in (3-26) results in:
- a8 3s
3L, (1) | ' 31,(t)
g g(T) g 52 a(t) 3 (6-8)
a‘?f1 | _
g;é-- L i= la?s (5"'9)

vhere I is the (12 x 1&2) identity matrix,

By (6-7), (6=8), and (6-9) it iz seen that hypothesis 2) of Theorem
'©3,1 is eatisfled, Fyom (3-20) and (3-22), we have:

DIE) = B , (6-10)
p2a(8, 8) = & . (6-11)

The guantities in (6-10) and (6-11) are certainly contimous in 5 in
the mom of the v-spneoy se the bypothesis in Part 2 of Theorsm 3.1
is also satisfied, and therefore the theorem can be applied to the
minjwom norm exemple., Theorem 3.2 has no hypotheses under question,
ginee it is merely on assertion cencerning the solution of the JQ«»-
problem, ILewma 4,1 has the ssme hyp@theses as Theorem 3.1, 30 it is
applicabls to the example,

In the hypotheses of Theorem 4,1, the convexity of o and the
existence of & mirirmm point of the Jeproblem cammot be verified at
‘present, By (6-8) and the "stacking” procednrs used to form 8, the
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o, 3ty
matrices ya— and gy(t) arss

af; oL,

g = 8(T),  gu-(t) = 3(t) (6-12)
The metrices 3(T) and 5{i} aro covariance metrices and thus ars alwsys
positive semidefinite (see pert 2 of Theorem 4,2); this proves the
first part of hypothesis 3) in Theorem &4,1. The second part cannot be
pregently verifisd, mt the fourth hypothesis is walid from provicus
diseussion. The assumption im part 2) of Theorem l&.llconasms the
convexity of Ji since ths J in thé winiwom novm probiem is quadratie
in the norm of B, it can be easily shown that it is a convex functionsl.
In Theerem 5,1, hypotheses 1) and 2} have been discussed previcusly,
and &) follows eozily fyom equatien (6«11), The boundedness of e
cannot be precontly verificd, however, |

In gousrel, the minimmm norm example satiefies most of the hypo-

theses in the theorems derived, The mest serlous exceptions are, of
courge, the ssawitions concerning the eéwaxity of @ and the existence
of a solution to tho Jeproblem, The success oblained in weing the PGM
and DGIM algositlms gogpents, however, that the above theorems are

valid for this ozanmpia,

6.%2:2 Boonlis and Discussion
The above problen was sslved nalng both the DGIM and the PGM
algorithms cdasoribad in Chapbor 5. As mentioned in that chapter, the
goal of the algorithws wag to find e JQ«pwblam that was equivalerd to
the above J-problem, In this soetion, DGIM and PGM are compared, and

the resulis of the compmbational selutions are given and discussed.
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Scme of the compuler techniques used and a description of the
progrens whieh implement the sligorithms are given in Appendix G,

Twe wavialles swhich were not defined in Chapter 5 will bs used in
the ewaluetion of the computational mzmlts; These varisties will now
be defimed, Uping tke vobtaticn of Chapter 5, lst

N
L7 e " TG e

(6-13)

To get a geometrie interpretsation of 4 3 in o=-space, refar to Pigure °, -
or 5.4, Since ‘é*i is the rorm of the difference of two uwit vectors,

it is o mesgure of tha “angle" between these two vectors, Thus by iz

2 meesmuve of how woll the neceszary condlibiens for sguivelemcs, Vgiv@zz

_ in part 1) of Theorem 4,1, sre belng ssbtisfied st the ith iteration.
Suppose alse that an 8,* 18 found such that 4y = 0 for that i, Then,

by (6-13), 8;% is the scintion of the Jgéwpmbiem dafined by

@i = DJ (§,j_"i’}s This mears that 35‘* satisliss the conditions in part 2
of Theorsm 4.1, 2xd is thus & mindwum point of the Jeproblem {(ths desired
solution point;. From the above reesoning, the siss of ay is & good
measure of how well 8,% satlofles the equivalense conditions, Thus

4 < 6 for somc small real § was chosen as a stopping condibtion for both
the PGM and the DGIM algovithas, Also, the §i’i‘ which rosulted vwhen the
stopping condition was wet w18 regerded az satielving the conditions of
Part 2) in Theovsm 4,1 Papproximately”. This point was then considered
an “spproximste” minimum point of J.

Suppese nww that the sbove stopping condition has been satisfisd,
and 1ot 3° be the point in @ ot which the sufficient conditions for
equivalence in Part 2) of Theorem 4,1 havs bsen satisfisd "appreximately”,
Then the following guantity is defimed:
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(6~14)

4 oo
T4l jps®o ”a

5]
8,° =

If J(8) has severel minimum points in o, Af may not converge to gero

as i "'" w, If it does, however, it can be used as another measure (in
addition to éi) of the quality of convergence of the algoritlm consider-
ed,

The speeific DGIM algorithm which was used to solve the minimum |
norm problem is given in Figare 6,2, In the description of DGIM in
Chapter 5, the cosfficient ¥ was left to be an arbitrary mmber between
0 and 2, In the actusl a}.ger‘ithm used, ¥ wvas initially 0.9; that is,
since the initial gﬁpss of % was probably a poor ene, the gradient
vector of J at &

i
started to inerease (the algoritim begap to diverge), y was

* was welghted heavily in the expression for iii +1°
It Ai
radnced by 0.1 to stabilize the iteration procedure, It will be seen
that this method of choosing y worked well for the problem considered,
As mentioned b@fom s the stepping éandition for DGIM was linked to Ai;
the iteration was terminated when 4, became less than 0.00, The rmmber
0.01 was chosen arbitrarily; however, its use resulted in & good com=
promise betwsen the mqnirmnt that the nsesssary conditions be satis-
fied and the requirement that computer time emd accuracy mot be excossive.
The PGH algoritim used is given in Figure 6.3, The imitial guess
of §° was meds by choosing an arbitrary feedback ceefficient, Ko(t.},
conputing the resulting point 8_€ @, and letting §_ equal the gradient
vestor of J at §,. Tho same stopping condition as described above was
also used in the PGM slgorditim,

The computational results using the two algorithms are shown in
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Let g, = DJ,
Yo = 0u9
Aosea

:

Solve §, Problem, L
yielding K;*(t)
1 Qg = Qerygfiy + 7, DIG*)
Find 8.% resulting
i
from K.j_*(t) T Bo

< Yipy =0 1 Yos
‘ 1

Compute 8,, A7, 5(3;*)

; Yigd =% | Pasa0d
Write 1, 8,5 A7, J(5,*), %, | Yes No
| 832834 7
8, <000 7 2 I
g =0 Vs

Write: "y = O% O

Figure 6.2 DGIM Algoritim ~ Minimum Norm Problem



Choose Ko(t)

l

Compute
Resulting §o

!,

‘Let &0 = DJ(§°) :

!

Solve &i Problem,
yislding Ky*(t)

)

ﬁn& 31* resulting
from K3*(t)

Gg4q = DI(Byyy)

)

é

Compute 4, , 4‘;

write d(85,4)y 7y

l

[

Write i, 4, Ag

Biyq = (1308 +7,3;*

1

!
<6150.01 1> L.
Tos

TP

Find 7, to minimize
Jt(l"yi)gi + )’igg_]

Figare 6,3 PGM Algorithm - Minimum Norm Problem
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Pigures 6., 6,5, and 6.6, The results are plotied as a function of
computer time, so that the methods ean be compared on the same basis,
The PGM methoed took about twice as long to r™n, per iﬁoratian, as did
DGIM; so & comparison of sonvergence on the basis of mumber of itera-
tions would not be meaningful. (Each point on the graphs represents
an iteration).

It can be seen from the fignres that both algorithms achieved the
stopping condition (4; € 0.01), bat that the nature of convergence is
different for each méthndu (Note that a few iterations were made after
the stopping condition was satisfied), The successive valnes of J(&i)
are monotonicelly deereasing for P@M, as would be expected from the
nature of the glgorithm (see Theorem 5.1). Also, Ai" decreased mono-
tonically., This makes sense, by the following reasoning, For this
problem, DJ(8) = 8, Then, by definition, when J(&;) ! J(3)) (converges
by monotonically decreasing to J(8,)), we have that ||, - & Jlo + 0;
and so un.r(si) - DI(8,)llc + O, By (6-14) and the fact that §, = w(s?i),
3t follows that 4,° : 0 az 1 ¥ ®, It should be noted that the 3° used
to compute Ai" was the point obtained computationslly by PGM and DGIM
when the stopping condition was satisfied, So this 5° did not satisfy
the equivalenco conditions exsctly, tut only within the tolerance speci~
fied by the stopping condition. The behavior of 4, for PG, as shown
in Figure 6,5, is conslderably more ervatic than that of J(ai) and Aio.
This behavior is possible because PGM chooses values of 31 to decrease
J(Si); it does not matter what the gradient vector of J at thess points
happens to be., So in the exsmple considered, the point chosen at (ecom-
pater time) 7.5 minutes resulted in a decreass in J, but the gradient
vector et this point, vDJ(ﬁi), did not compare very well with the gradient
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voctor at the resultiug solution polit, DJ(B i‘*‘#}, The behavier of PGM
as discussed atove 1s consistent with the irherent wnaturs of the
algoriths.,

The mature o DI is also reflecied in the resulis shown in
Figures 6.4, 6.5, end 0.8, ILameuwber that the choice of ¥; Was mads by
checicing the cornvergsneo of the method as reflected by.ai. IfA " bogan
to incresss, Yy ¥as rednced by 0.1, which would hopefully stabilize ths
algoritﬁm and cause 4, to d@eé@w;@ again, As shown in Figuve 6,5, this
is what actually cemvrred, Thus the stepping condition was eventually
achieved using the zhove method, The interesting result is that, by
_ “foreing” 4, to bosome smell. the algorithm elso canses J(&f‘) t0 bee
" come snsll, as shown in Figure 6.4, In a way, this is an experimental
verification of 'E;h@ suifinlieney of the equiveiencs condition in Part 2)

of Theorem 4.1 f@é the axemple considered, Similarly, the reduction

of 4; by radneing J{8, ) in the PGU algorithm cen be viewsd as verlfylng

)
the necessity of the equivalsense condition,

In g@n&zml, P soems to b@ & more dopswicvie algorithm than DGR,
becanse J (fﬁ’i) decraases ponotonleally. Also, a cenvergence thecrem
(Theeren 5.1) exists for %’39 while wo cuch theorem exdsts for LGIM,

In a prastiesl spplication, FOM probably mmld' have beon stopped after
five iteratisns, becavse ilie inewense in cystem p@rf@f@nce, as reflscted
in the value of J, wes yvolatively smaell after that, The same can be
seid if the' stoppirg condltion was chosen to be 4; < 0,02 instead of

A, € 0,01,

i
The initial conditions for the results described above were found
by using K, (£) = [1 1 1] as the initial feedback coefficlent, This

coefficient was the initisl corndition for FiM, UWhen KO('t) was used in
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the system equations, it resulted in the point §o. Then ?;o =.DJ (30)
was used as the initial condition for DGIM, thus sssuring that the two
. algorithms were started on an equal basis, The components of the feed- .

back coefficient XK°(t), which was computed when the stopping condition
Ai £0,01 was satisfied, are plotied in Figure 6,7, This feedback
coefﬁciant definss the optimal control for the minimum norm problem
(by (2-9)), within the accuracy of the stopping condition, The diagonal
elements of the response cwariancé matrix S°(¢), which resulted when
K°(t) was used in the system @quations. are plotted in Figure 6,8 as
a function of timae )

It should bs mentioned that a set of comparison runs using an

. initial feedback cosfficient K (t) = (10 10 10] was also made, and
that both the PGM and DGIM algorithms converged to the same solution
(%) as found above, The maturs of the wnveréence was sim;llar to
that shown in Figures 6.5, 6,5, ard 6,6, o those results are not

given here,

6'.:'3' “Skraltents Li.itﬁ.x:éh vﬁ%smr Gust Alloviation Problem

6.3.1 Problem Stotement
The problem considersd in this ssction concerns the alleviation
of wind-gust effscts on lzanch boocliers, and was formulated and
studied by Skelton in [6.1]. As was stated in Chapter 1, this wind-
gust problem motivated s research recorded in this thesis; therefore,
it is natural to use the resulis of the research to a.ttacl; the original
pmblém. The equations which inééal the boqstér:géitch{axigs dynamics

and the filter deseribing the incident winds were derived in detail in
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[6.1]s A brief outline of the derivation is given in Appendix E,
along with mmerical values of the coefficients in the equations, The
booster equations have been linearized about some nominal (no-wind)
trajectory, Other assumptions are that the vehicle is a rigid body,
and that fuel-slosh and engine-inertia effects can be ignored,

~ The wvehicle equati&ns i.mlving drift and pitch from the nominal
tmjectary are of the fomm (with the" time dapandema suppressed):

y= ely-i- c2¢+e3¢+ chﬁ
(6-15)
+ 051}1 + "6'“2
L X ] . : o
¢ = ey + a8¢+f:9¢ + oy B
A (6-16)
i * S50,
vwhore y is vehicle drift from the nominal trajectory, ¢ is pitch angle
from nominal, § is the engine gimbal angle, the ci's are giveﬁ time-
varying coefficients, and thé dots indicate differentiation with
respect to time, The time intervel considered is from launch at t =0
geconds to booster burncut at T = 150 seconds, The initial conditions

on the above sguations arei
¥(0) = 3(0) = §(0) = (0)= 0 , (6-17)

gince the initlal perturbstions from rominal are zero.

Tho ?arhhlas éﬂl and T, fm (6-15) and (6-16) represent wind
1oadinga on thn vehicle, and are found by solving the following “wind-
m&ing“ equations:
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L]

Ty = eygfly + ey (6“1@
iy = o350, + erglly + eygm | (6-19)
'53 = oy, + o9 (6-20)

7 where the ¢ i'a ave again time-varying coefficients, The wy tem ls
the output of a filter which nmodels the incident winds, and which is
described bys

Gy = oy, 4 oym (6-21)
5)2 = oy, * Gty + czafx . (6-22)

“he filter oquations above are driven by n(t), a white Gaussian noise

ipput which has zero mean and variance given by:
B n(t)n{r)] = 8(t7) , (6-23)

whers 8(t-7) denotes the Dirac delta function at t =7,
In this boostor model, the control u is a scaler which drives the .-
gimballed engines, The gmtion dﬁscrﬁ,ﬁing ths gimbel actuator

dynamies is assweed to be:

@ "
f == c?,ﬁ & cwu » (6-24)

The initlal values of ’?%lﬁ ‘Qz, _fﬂy W4 W,y and B in the above equations
are all sssumed o be zaro,

Now define a 10-dimensional state vector x=[y y ¢ é B ‘”1“’2"1“27’33: ‘
and .spiit the seuond-order equations (6-15) and (6-16) into two first-

order ones,’ Then it can bs seen that equations (6-15), (6-16), (6-18)
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;').V (6—-82). and (6-24) can be put into the form of
“(auz}. with the dimminns n=10andm =1, and with x(0) =

r=y (6~25)

r, = y (6-26)
r3a§=026§+¢+c2¢ﬁ, (6~27)
r, =8 (6-28)

Ty = I, = ezair + 02995 % cgoé + cle
(6-29)
+ 032111 + c33‘n2 . '

The drift y, the drift rate y, and the angle-of-attack § are of interest
because they are measures" of the error in the booster trajectory at
burnout, The gimbal angle B 1z constrained by physical limitations to
be less than five degrees during the flipght, The response Ib is the
bernding-moment on the vehicle at a chosen point along the booster,
This bending moment must be constrained so that wehicle strength
limits will not be exceeded during the flight., The first three responses
are actuslly of interest only at the end of the flight, while T, = 8
and rs Ib mast be controlled throughout the flight.,

It will be shown in the discussion on the performance index that the
derivatives of the latter two responses are also of interest, So define

two more r'tasspcm,:;esiw

T = é = - e258 * Opst (6-30)
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r, = Ib = oy + c35¢ + °36¢ + 0375 + G50y
o (6-31)
+ °39“1 + cuoﬂz + cb:l“B + eyt .
More detalled expressions for all the above responses are given in
Appendix E, In light of the definition of the state vector x and the
control u, it can be seen that equations (6~25) to (6~31) can be
written in the form of (2-3), with the dimension £ = 7,
For this problem, it is assumed that perfect measurements of the

state vector x are available., So the measurement vector z is
z(t) = x(t), (6-32)

. and there is no estimation problem, The control u will then be of the

form
w = - K(t)x(t), (6-33)

where K satisfies the properties in (2«9),

The performance index to be minimized is Skelton®s "upper bounti ort
the probability of mission failure" mentiored in C}sép'ber 1 and derived
in [6.1]. An outline of the derivation is given in Appendix F, The
index 1s formed by first assigning an “eror bound” Yy to each response,
rye Then the event of "mission failure" is defined to occur when any
one of the responses exceeds its bound. An upper bound to the proba-
bility of "mission failure™ is derived in térms of the response covari-
ances, and bscomes the pqrfomnce index Js'

oT
Jg = gy[S(D)] + | g [s(t)]at, (6-34)

%o
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where S is defined in (2-17), For this example

3
- ‘)’i
(8(1)] = 28, \~ : s (6-35)
“ 1251 v ( v giim)
5
gls(e)l = ) 2P (t), - (6-36)
imb

2 S
TR 4, (6-37)

“"‘F['“”i / 2311] 1”‘1’[:’12/ 2 "1z]
o

%
whe:e:_n. 'N(x)‘""}%ﬁ f e

P (t) =
(6-38)
-pf1 - %(Ei’)J 3
7,5 8, 2 /2
and pi = - mw-i-sii s i [Sjj - “—-‘-] (6"‘39)

for j'= i+2, By reforring to the derivation of J's in Appendix F, it can
be ‘seen that the response vector r defined in (6-25) to (6-31) is in
the proper form for use in J_. That is, the terminal responses are formed
fifst, with the "in-flight" responses f6llowing, As is also mentioned
’_ in Appen&ix F, the responses rﬁuﬁ and r7=Ib are not b@nndad, “bat are
,used in the evalustion of how often ruaﬂ and rszb exceed their bounds

- "It cen be seen that the J s perfomianceé index is a spacial case of
the general performance index J iﬁ;:(Z«-IG).* Tﬁe"problekm to be solved is
then the same as the general problem discussed in Section 2.2, using

- the above system, response, ad performance index equations, It is to
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find the uwEU {defined in (2-9)) such that J_ dn (6-34) is minimized,
subject. to the system equations dsfined above,

6.3.2 4 Suboptimal Problem
The originzl intention in this example was to a,pplyr both the PGM
and DGIM algcari‘i;hzm divectly o the probles of minimizing Js. When
the PGM slgorithm was spplied, however, the following difficulty arose,
As shown in Figore 5,3, the second step in PGM (after choosing an
initial 8 €¢) is to compute the gradient vector DJ_ (8,) and use it to
specify the first Jprmbléme ‘fhé gradient vector DJ s(go) is found

(se® (3-20)) in this exampie by first computing the partial derivative
g og
mtricaa -é*'s}‘ and g@g(t)n For the several inmitlsl points

Lol

S, tried, it

. g
was found that the elements of the matrix g-sg(t) were smaller than

0-100

1 for tE[145,1501, znd for most of the %ﬁ tried were less than

w50

10777 for t€[130,150], Now, the next step in PGM is that of setting

og g
QF(T) = s-é}- and Q(t) = gfgg-(t}g and using the Q's in the backward Riceati

squation {2-23) to get Ko’*—(t} by {2-22), To solwve ths Riccati equation,
the inverse of the matrix D'(+)Q(t)D(t) must be computed for values of
% in the entire tine :i.rrwwél [0,150], But this computation could not

be performed, duc to the extremoly small size of the elements of

og
Qt) = B
3g, s og, |
-gg-(t ) by a matrix funciion g-g«-(t) whose corresponding elements were

somowhat larger éﬁgmatwr than 1{3‘"29
’ 24

(£)s as deseribed ghove. An altempl was made to approximate

Jo Several approximations were tried,
but when QL) = ;;g(t) was used in the Riccatl equation, the mumerical
integration went unstuble for every approximation,

In 1ight of thess difficuliies, the attempt to use PGM to minimize

dg dimtly was abandoned. Instesd, ansther performance index, JBI’ was
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formed, and the PCM slgorittem was used to minimize it., The JN index

was chosen heuristically such that it "matched” the properties of Js

in some sense, and such that the above difficulties with its gradient
DJ (3) would not be encountered, It was noticed that the dominant

s
terms in the Js index varied as "5’%. Therefore, JE was chosen to be:
Yy
)
3y =B [8(1)] + ft B[S(c)]dt (6-140)
[+
2 r8(T)2
whore  hy(S(D)] =% ) [ (6-41)
=1 %
7 5, (8).2
hz[S(t)] =% Z [iig J . (6-42)
izl &y

The & i's are given real positive wwmbsrs which weight £he various
covariances, znd tend %o equalize the d:immpamy in magnituds between,
say, the gimbal angle and bonding moment covariances,

The Jﬁvpmbl&m iz then to find the u€lU that minimises JN
to the system equations definad in section £,3,1, Since the PGM

» subject

algorithm will be applied to this problem, it is useful to check

whether J,. satisias ths hmth%ﬂ& in the theoroms derived in Chepters

¥
3,4, and 5, To do this, note that Jy is8 & morm-type of performance
index, and is very similar in form to the psrformance index used in
the first example (seo section 6.2, equation (6-6)). Tims the comments
made in that section concerning the hypothesses of the theorems are also
applicable to dye In particulsr, Jy is welledefined and convex, and
its partial derivatives satisfy the hypotheses of Theorems 3,1 and 4,1.

The question of existence of a solution to the Jﬁupmblem is still
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unresolved, however,

It was found that the computational difficulties which were
encountered when PG was applied‘ to J s did not occur when FGM .was
applied to Jy, Usingg;l;e §,"s given in section 6.3.3, it wa§ found
that the elements of.fa_"g"(t) were large emough so that the problems
mentioned above were avoided. |

Thers are two objectives in using the PGM algorithm to miniwd ze
JN' The first is to see if PGM can be spplied to a problem with a
higheorder, time-varying set of system equations, These eéﬁatiops,
together with the admissible control set d. defins a "set of aétaina-
bility" o that is considerably more complex than the one in E:émple 1.

- Thus & successful application of PGM would indicate that it can be used
to solve practical problems, which usually have complex dynmamical models,
The second objeétive is to use PGM on Jﬁ to obtain “good" co.ﬁtrléls; for
‘Skglwn's gust-alleviation Iproblem. The quality of the controls will

be measursd by Js’ Skelton®s "upper-bound" performance index, If the
controls are of good quality, the example would demonstrate ’dia- usg-
fulness of PGM (and the supporting function-space theory) in a specific

practical application,

6.3:3 Results and Discussion
The PGM and DGIM algorithms described in Chapter 5 were applied
to the load-relief problem in the following way, PGM was applied to
the problem of min:hﬁzing JNg the resulting sequence of points {31} in
the "Set‘of a;iiainabﬁity" @ wore stored, and later were evaluated
using the J, performance index, The DGIM algorithm wes applied
directly to the problem of JS. and the resulits obtained using this
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iterative method were compared to those obtained by using PGM., Some
of the computer téchrﬁ.qaes and descriptions of the programs which
implement thé algorithms are given in Appendix G,

The specific PGM algorithm applied in minimizing JN is shown in
Figure 6.9, and the DGIM algorithm used to minimize Js is shown in
Figure 6,10, These algorithms are similar to those used in the first
example in Seotion 6.2, with the following exceptions:

1) The initial feedback coefficient K _(t) was found by choosing
an initial quadratie problem specifisd by &IC’ and then solving the
 Ricesti equation in (2-23) for K (t), This initia) feedback coefficient,
when used in the system equations, then defined the starting point,

- B €, for the iterationms. |

2) The weighting factor A in the DGIM algorithm was selected
beforehand, an:i kept constant throughout the iteration sequence,

3) No stopping condition was invoked, as was done in the first
example, due to the high cost in computational time of each iteration,
Instead, the algorithms were allowed to run until "good" controls
resulted, or until a clear pattern of the sequence of iterations
emerged,

4) As mentioned sbove, the PGM algorithm was applied to the Iy
performance index, and the DGIM algorithm to J 5° It was only afterward
that the two sequences of points {%i} (in PGM)and {51*} (in DGIM) were
compared on the common basis of Skelton's J s performance index. This
contrasts with the first example in this Chapier, in which both algori-
thms were used to minimize the same performance index.

Two separate iteration sequences were run for the loadw-relief
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exemple, The differences between the two sequences were in a) the

initial feedback cosfficient, Ky(t); b) the "error bounds" y, in J_s

c) the values of &, in Jy; and d) the value of the weighting factor

A used in the DGIM algorithm, The results of the two iteration sequences

are presented as follows

Iteration Sequence 1

In this sequence, the values of Yy used in J s and of 61 uséd in

JN are as follows:
Yy = 3000

Yy = 40

¥y=8.73 x 1072

8 -2
71." = 5,73 x 10

Vg = 2:25 % 3.06

61 = 3,0 x 103

n“r
3

8, =1.0x 10"""*

a = L]

8= 2.0x m"i"

10
67 = 1,0 % 10

Remember that the responses rg and r, are not bounded, but are used in

determining how often ), and r5 exceed thelr bounds., The error bounds

A chosen are similar to those used by Skelton in [6,1], and are moti~-

vated by practical considerations, Several values of the 8,°'s were

tried; the ones listed above gave reasonable results, The value of A

used in DGIM was A = 0,01,

Larger values of A were tried (0.9, 0.8, 0,1),

but when used in DGIM they produced &i‘s that caused the backward
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rmmerical integration of the Riccati eguation to go unstable in the
first iteration,

The initial condition on the iteration sequsnce was the Gyam
problem, which vwhen solved by means of the Riccati equation in (2-23)
yielded the initial feedback coefficient, K O(t), This §po-problem is
specified by the (7 x 7) quadratic coefficient matrices, Q (1) and Q(t),
tel to.fl‘:}. The terminal time coefficient metrix used was

-7 -

1,1481x10 0 0 0 0 00

0 5.8500610 © = 0 , 0 0 0 O

0 0 2.,1288x10° 0 0 O ©

QF(T)= 0 0 0 0 0 0 0
0 ) ) 0 0 00

0 0 0 0 000 O

0 0 o 0 0 0 O

(6~43)

The matrix function of time Q(t) which was used is spseified by:

s o
o 0 0 o0 ¢ 0 ©
o o 0 0 0 0 O
0o ¢ 0o o0 © 0 o0
Qt) = 0o 0 0 Q, 0 0o 0 |, (6-lits)
0 0 0 0 Qg 0 0
0 0 0 0 07 Q.0
I 6 0 0 0 0 O Q,m

where the values of Qii’ i= 4.5.6.’7, at S-sscond intervals of time

are given in Table 6,1, The values of the Qi N between the points given

wore found by linear interpolation, The above values of QF('Z‘) and Q(t)

were chosen rather srbitrarily: it was found that ths resulting feedback
coefficient Ko(t) was not an especially "good" cne as measured by the

J ~performance index, and thus it was felt that the QF(T) and Q(t)
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matrices chosen were realistic initial guesses,

The results of applying PGM to the problem of minimizing JN are
shown in Figure 6,11, The values of Iy are plotted with respect to
computer time on a CDC 6500 computing system, using Fortran IV, The
computing t:‘un_e for each iteration of PGM was about 13.2 mimites, This
time included the rumerical integration of the Ricecati equation in
(2~23) and the response covariance equations in (3«1) a;rad (3-3), as
well as the process of finding A 3 to minimize Jdy shown in Figue 6.9,
BEach point in Figure 6,11 represents an iteration, It can be seen
that the successive values of J decrease monotonically, which is to
be expected from the naturs of the PGM algorithm,

The sequence of points {Ei}, i=0,1,...5, which msul£ed from the
above application of PGM, were then mluated in Skelton's J perfor-
mance index, aé shown in Figure 6,12, (See Appendix G for details on
how this evalustion was carried out,) In addition, the results of
applying the DGIM algorithm to minimizing J g 2re also shown in Figure
6,12, In this figure, the values of J g produced by PGM do not decrease
monotonically for the last two iterations., This is due, in part, to
the “mismateh” between the performance indices Jy and Jg, Apparently,
however, there is significant correspondence betwsen JN and J s’ because
the last three iteration points produce values of J . on the order of

5x 10"6

. As an upper bound to the probability of mission failure,

this figure shows that the system performance is quite good for these
points, This is especially true when the Js values are compared to the
initial J s value of O, 0302, The DGIM algorithm also shows a decrease
in J_, but this decrease is not as substantial, It should be noted that

one iteration using the DGIM algorithm on J, took about 14,7 mimites of
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computer time, This is longer than the PGM iteration time mentioned
above, but this is due only to the fact that it took more time to

Qvﬂuata the J s performance index than it did to evaluste J The

N
process of choosing a:brl in DGIM actually took less time & 10 sec,)
than did the process of choosing §i+1 in PGM (~ 30 seec.),

By referring to the defimition of PGM in Figure 6,9, it can be
sesn that there is a practical difficulty in making use. of the resulis
plotted in Figure 6,11, This ‘difficulty is that the controls which
produce the sequence {i';i}. 1= 1,2,,4.5 are not known, However, there
is a known sequence of feedback coefficients produced by PGM: namely,
the sequence {Ki"‘(t)}. i =1,2,s005. This sequence results from solving
- the associated §,-problems in the algorithm, Since these coefficients
define the practical controls of interest, it is useful to evaluate the
sequence of points {§i*} s = 1,200065 _(pro&ucéd by the céefficients
{Ki*(t)}) using the J performance index, Note that the 8;* are points
on the boundary of o, The results of this evaluation are shown in
Figuve 6,13, This figure shows that the last three feedback coefficients
in the sequence define very good controllers, because they produce a
probability of mission failure that is less than 1072, In fact, using
KB*(t) in the load-relief controller produces a probability of‘ mission

g

failure less than 10° , So Figure 6,13 shows that using the PGM

algorithm on J, to produce load-relief controllers is very useful from

N
a practical point of view,

The rmmerical values of the last computed fsedback coefficient,
K5*(t), are given at 5-second intervals in Table 6,2. The superscripts

for the K's denote vector componsnts, and the intermediate values not in



100

XA
-2
54,0210 4
\
-2 \
3.0x10 L \\
\
\\
2,000 2 | \‘
\
\
. -2 \
1,010 4+ \
0,502 | o
\
\
& g
\
\
-5
J0x10 L \
1.0x1 \ S
\ /
\ /
5 ‘ x/ é
wil \ CDC 6560
0.5x10 \ with
\\ / FORTRAN IV
\ /
H’ Computer Time
Y % $ 2 } p—t=  (mimutes)

0 15 30 ‘;5 60 75

Figure 6.13 Js(ﬁi*) found by PGM, Sequence 1



101

Tv-a8n . 2l6% 6~
10-J0e0E6R" L -
10~-d4guTL6€° 2~
TU=-362409¢° L-
TV~-341VTEEG * 9~
TU~-3zgg61H° L~
IU=-d4619898° L~
TU-46U6198° 1~
10-~-dgzgve1’¢~
TU-3U0gyghyg-
IV-312.989°%°9-
VU=-3%11266° 9=~
TU-3UZL190% 9~
CTU=-dg17291%6~
TU-d42¢€212€°8~
IU=-2149496° | -
TU=3GgLH0L2°8~
[U=-3460L66% 8~
TU-3169889° 8~
T0-4499901 %5~
1V-3,865¢€0° g~
1U~dugg998° g

TU=~d7£296¢° 8-

1U=-3288%96° |~
TU-4188161°8-

S IU=-31681V2° 8~

1U~-318827256%9-
IV=d9Gh L1 9~
TU=-366VG59 L% ¢~

TU=345GheL -

IV~-498966LE°% 6~

n&

HO0-39LH0. 17¢

ZU=~3/¢,008" 9~
10-47102€¢66°8~
10~3g6920€° 1~

TU~-2182€8L°T~

1U-3THHEGqU 1~
2u-4101692°8~
10-3e€61£8° 1~
10-3,14%25¢€%¢~
1U-49,91¢€% €~
10~-2696092° 1~
10-3497984%° 1~
TU-314%9¢81%2~

2U=-48%6181°2~

ZU~360UH7Z0° g~
10-366.1€24° 1~
10-369220L°% T~
103666409 1~

10=-36EReheE T~

10-3€96022° 1~
10-40g16711 1~

AL ED ) E-AVIVIVAR

10-5122L69°% 1~
10~3%2,666%2~
TU=-36u0GH6° 2~
T0-3¢946,9% 2~
T0-2304%24560 %y~

10-39.,8V1°% 6~

TU-4gLULgG% 2~
IU=-32998Uz2°%Z~
2U-460269¢ -

wu

*0
gU~4i3766e% e~
10=-320U2L06° T~
ZU~3GTH62H -
20-41646.60°%¢~
20=-39¢oh12® 1~

EU=3620V08° 9~

€0-4646069E" 1~
€0-d4261921°2~
ZU=dU1gLg0° T

Z0-3244%080°72

70=-dcHp1c2°%7

ZU~482190L°%¢

Z20=4 T4£01°% 1

Z0~368986¢°7

20~34890049°%7

€0=-36189L2°9~
20-35689901° 1~
20=4LT0T06% T~
IALETAE FEL R £
€0=-d5¢,808°% 6=
gU~-3187%718°9~
2U=3%g,908°% [~
ZU~3THcU0L -
20=4EwT696° G~
Z20=~464%9.98° ¢
20=42H 1994 % g=
2U=36109H9° 5~
20-126¢8L8°%°¢~
2U~dgueggr Lz~
EU=-dGETGLL -

ma

CTAZTlgUL9%2
‘\JC.,.L@MMUO*QC&M.!
#J~agTy2 11 %%~
GU=380899¢° 6~
mClu¢NmM®@oﬂi
GU=392%6mZ° e~
MC'L’MNCNOMcwl
HU=ITCETEZ T~
HU=30871660° 7~
GU=2119€9,L %G~
mCluPONN@Ceﬂl
GU—=A46940UE L * 6~
GU=3T48T¢L® 2~
mC‘UN.NMHHmOm!.
mClummmm®©omt
GU~3EQ9R7E9°1

GU~dH662LE% Y

GU=-3L96C18%9
GU~206.808°L
GU=3)6292L°%¢
GU—-3886.01°%2
GU=aTU2976°  H~
BU=IHCHGLH -
HU=3IT0EZHE €~
HU=3061299° ¢~
#0=426,602°¢—
%0=3996, 191 ¢~
#JU-3906862° 2~
HU=40886GU° T~
GU=39¢UL 16" T~

mm

1 eouenbeg uojivaesI ui (3)5¥ Jo senyes

2°9 erqel

:c
6U=35¢G178°% 2~
LO=2616418° 1~
L0=402%€18° 9~
90~302926€° T~
90~2¢198€2° T~
GU=IHUHEGT T~
90~3¢H898E 2~
90~369%012 ¢~
90-dGH98H¢g 7~
LO~3098£18°9~
10=-322€€10%9~
LO=~3629€0G° L~
80=-d1€29¢1 %6~
LO=a,1220€° 1~
g0~3¢9LeecT 6
Q0~d448612L%2~
80~4c8Z1LT" T~
gO~4g229€0° 1~
80-4¢g0g82e° 1~
QU=3014192°%2~
gO~ATOU0ZH® 4
LO=a0LG0LE" T~
LO=d4E70T0G6 % 7~
LO=dZhh619°% -
LO=d1 %0161 T~
g0~4d1e682¢ 8~
gO=dHT1CEH2 " -
60=3012€€9° 6~
60-3196828°9~

60=3191L96° 1~

Hu

Ut
Gl
ol
Gel
0%1
1T
0cl
&1l
o1t
GOt
001

06
1]
08
&L
0l
g9
09
GG

&%
O
Gé
0%
ge.
(814

&1
414

(vog) 4



102

U~442069%° 1~
mCluwcm¢mm P
mc ~4ETOUEU 4
ZVU=34/5969°% b
CU=H488H 186" G~

EVU-4262066°%9~
1ZU-dGEy9EL®
10-32¢90722° 1~

JI0~3717%66°T~

L 20=d169Hg9L" b;(
7O~ ~3515168° 1~ ""20~ -1 6226L°

CTU=3T9LHL0% 7~

CO-22G99L9L°%
2U-3946606°% 1~
_ZU0-a3g40126° Hs;
2U~dUg9188°Z-
ZU-38G64%866° ¢~
ZU=3€9HEG2 "% trm
EU=ST16E9LL
20~34861299°9-

TU-42¢1291° ﬁs

&

Z0=a915iwl 8=

Z20=-400GT20% =

20~dH L HZ200°%g~
20-3981L.88% 9~
ZU=366EHG00" g

QU~dLL16UT 6=

Z0=3990789% 5~
10-4%89922° T~

LI0=4T 2921 1~

10-2006116° 1~
10-4294.687° 1~

CTVU=3266H82°%°2~ TU-360LTE92° 1~ TO0=38%0666% T~
LTU=-411929%% 2~ 10-2608272°1~. 10-306€68.° T~
- IV-48588€6°2~ T0-J88E9%8°T~ 10-47189€.6%7-
(TU-3GgULEZYE~  T0-20€T286°T~ T10=5.%09719° 7=
TU-384%98L° ¢~ TU=3052696°T~. T0=3G6099%¢ 2
TVU-32L6%€T1%¢~  10-36%9669°T= 10-388¢620° .
TU-3F12gV16"* TU=dT126UBE T~ T0-4997U9G° 1=
AU=aUIUZy et 1= 1U~dE94.4%0% T~  10=372,0221°%1~
CTU-dE6U626° T~ ZU-35%94960U°8~ 20U=3¢coggz® g~
[ TU=-3188L67° 1~ 20-300U9€96°¢~ Z0-5/6QUCL g
mczwmmm¢¢mama;smca&pmmmmc,¢;;gmc:ucH@cmm €
ZU=-d18299U% 9~ ZU-d4y20872°%z~ 20-3166880°2~
ZU-JLEGLLZ Y= EU-d22¢UTE%6~ 20~3194801°1~
L eY=3669286°2-__ EV-362%296%¢€~ _ €0~3¢£86G562° 9~
PZV=3966816° T~ €U~H4986GTU T~ €0=dT29En%H " i
ZU=-H6HTHeEg T~ EU-3969897°¢ €0=d69T16EH ¢~
(EV=dOUEUYL T €U~3G26922°€ . _€0=3EUH69G°
TEU-3gT00HZ g~ EU-46678T17°2 E0=dLzougl® 1~
(E0=3)U9hg6° 6~ £0-3€6496T°T  €0~3GU9GT0* 2~
¢cAWﬁm¢mmmg»;:;%cnmwcwmmm:ﬁ,e;¢owumwhqmm £~
.o X nu

EO-a21T¢60°
Hcsammmmﬂq@
EU=379LT0¢ "
ZUATH9GG L
FACR-10R R N R
Nﬁa\ixﬂommzam%
TU~ITLL0637 T

CTU=30€7E29 T v L

.cc+uﬂm®owae

TU~389£588 6
IU~28668657 ¢~
TU~3R0CLHL "=
TO=-3612H1L 8~
TU-321029E° 7=
10~-20/,8¢2¢6° 9~
Yotdygegeeew
o&u meaXﬂmz

+3g89161°%2-

(

:-45-6
H

ac+u@cﬁmo@@
GO+dzrreril’

TU=-34060Us6°
UU+a682018° 1
Uo+46¢2609°9

i

£y et
£

COITIEH L7 L

GUFa9%6606°"

QUTATERGTVB

UUtT38466E8°9

Uu+a076181%2

QuU+dgeHezZI®l

T0=3%6LT6%° T
. h& .

(*7.3u00) 2°9 o148

Or=4T009€EL%2

C0=492L6€9°T
G0=HLL6069°% L
GU~dT1LEEBY L

H0~31106612°1

 HU-d9U66T8°T

%0=-42.92982%2

_aasu@mm%hm.u

§o~-3dEv1016°9

cO~3092964° 2~

B3y e609°2
H0-4766€€6° T
H0U~34£99¢96° T~
70=389¢¢c9°
¢@%,1MHoow.ms
¢ Omdg omQQw s
E0-3T18206°¢~
mcaxamammx$‘
£0~392H4592% ¢~
 E0=3hEGE00 g
€0-d¢iggay 2~
g0~32
£0-3TL060w° T
GO~369T18EL%6

E£0~4966¢6T°T

E0~J€2iwBE"T

£0=~4966299°T.
£0=~38H09LT°T

GO=~3€8L4v19°2
¢cxmommumo.a:
mosu¢mmﬂﬂ¢ m:

wu

2ULg0g T~

754
Gl

0%

641
0%l
CEI
081
11
01T
%01
001
6
06
poie]
0B
Gl
04
o5
09
ore
UG
oy
oh
L&
0%
Gl
ge
&1
141
G

0

Aoeuv %



103

the table were found by linesr interpolation. The feedback coefficient
K5*(t) was found by solving the J_~problem defined by the guadratic

&

2
coafficient matrices QF"’('I.‘) and Q7(t}, 4€(0,150), The terminsl time

coefficient matrix was

8,570 0 4 o 0 0 0 U |

0 542420610 o 4,0 0 0 ol

5 0 0 3,6642x10° 6 0 O O |
< (1) = 0 0 0 6 0 0 0 .

' n 0 6 0 0 0 0

o 0 ¢ 0 0 0 0 |

0 0 ¢ 0 0 0 0]

3@;:;xaTh@,timaw§aryimg cosfliciasnt maﬁrix'&giﬁ) was cf the same form as the
Qdaatrix i (B-4it), The veluss of the diagonal elements of interest zio
"givan.in,Tahla 6.3 at Sesseond intervals of tims, Again, the inter-
‘mediate valuos of the olemenis wers found by linear inmterpolation.

The standard deviations of ths “in-fiight® rasponges, f# = 8 and
r5 = Ib’ vhieh rsovited when KS*(ﬁ} was used in the covarisncs equations
are plotted in Figure 6,14 as a function of time, {(Renember that the
TeEpONSEs ars gerses:an Grussian rendom variéhlas; thug the response

statistics zre compleicly specifiad by the standard deviations.) Frow

L)

the figure, the peak stendard davistion o 8 is about 5,0 x 10 7, and

that of I, is gbout 3.1 x 105, Since the corresponling "error boumds®
on B and I, ere ¥, = £.73 X 107 and Yy = 2.25 x EGQ; it can be seen
that the probability that the responses exceed their error bounds a2t
aﬁy'giQQn'thme iv very sesll (ﬂ@rﬁainiy‘leaé than iﬁmf)e sakﬁ5$(t}
'pro&hcés “good" in~fiight rééponsasa Tha standard deviations of the

responses of interest st the torminel time were:
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Table 6.3
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o (150) = 147

k4

® 0) = 0, 8’
cry(lS ) 99
O'g(l§0)=: 0,0197,

So the probability that these responses were outside their respective
bounds of ¥y = 3000, Yy = 40, snd ‘;/3 = 0,0873 at the terminal time

is also very small, Thus 1%*('&) was also a "good" one in producing
small terminal responses, The above results give another indication
that using PGM to minimize JN is a useful technigque for obtaining good
load-relief controllers,

In Figure 6.15, the values of b4, computed in the PGM and DGIH
“4dterations are plotted., Remember that 4, (defined in (6-13)) is a
measure of how well the necessary conditions for equivalence, given in
part 1) of Theoren 4,1, are being satisfied at the ith iteration, In
interpreting Figure 6,15, it should be noted that the 4; computed for
the PGM sequence is with respect to Jy, and the Ay computed for the
DGIM sequence is with respect to Joe It was found that 4; for the
DGIM sequence changed very little, and thus little progress was made
towards satisfying the egquivalence conditions, For ths PGM sequence,
however, 4 5 did decreasa rapidly. A stopping condition which would
guarantee “approximate squivalence®” (such as requiring 4 ;< 0,01 in
the first example in this chapter) was not used in this example. Instéad,
the iterations were continued until “good" controls (as measured by J s)
resulted,

ITteration Seguence 2

In this sequence, the values of 7, used in Jg and of 6, used in Jy
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are 58 follows:
yo = 3000 6, = 3.0 x 10°
1 1 ° .

7/2%1&0 52'--0.4

2

- -
¥, = 8732107 8, =1,0x10
s =225 x20° 8, = 1,0 x 10°°

5 5
- -5
8= 1.0x 10

The Y; are similar to those in the first sequence, as are the & The

i
value of A used in DGIM was A = 0.9, The values of the QF(T) and Q(t)
quadratic coefficlent matrices which were used to start the iteration
sequence were suggested by Skelton in private correspondence, The form
of the matrices is the same as that for the initial coefficient matrices
in the first iteration sequence (see equations (6-43) and (6~44)), The

nonzero slements of the initial QF(T) natrix aret

Q (1) =111 x 10°2
1n

(T) = 2,08 x 10"3
22

Q (1) = 1.42 x 10’ .
33

The form of the initial Q(t) was also the same as that in the first

sequence, except that the values of Q4, i = 4,5,6,7, were constant



109
over the whole time interval, and were given by:

Q, = 7.8799 = 10°

~10

Qe = 1,2346 x 10

55

- 5
Qés = ?08?99 x 10

Q= 7.726 x 102,

The results of applying PGM to the problem of minimizing JN in
this sequence are shown in Figure 6,16. Again, the sequence of values
is monotenically decreasing, but the percentage of change in Jy from
the initial value is not very great, The evaluation of the { §i} sequence
. obtained by PGM is shown in Figure 6,17, In this case, the sequence
{ Js(ﬁi)} is slso momwtone decreasing, As in the first se@ence, the
DGIM algoritim was spplied to minimizing J_, and the result is also
shown in Figure 6,17. |

The decrease in the J performance index achieved by both algorithms
is not very subsitaniial, as can bs seen in the figure, ﬁis was partially
due to the fact that the initial value of Iy = 3,?55 x 10‘8 was very
small as an upper beund to a probability. Thus, the initial feedback
coé%ﬁicient, Kg(t), wag a very good one, and perhaps nét much improve-
ment could be expected. Another reason could be that the A used in DGIM
and ﬁt;hefsi's ehb’sén for JN may have baen’poorly selected, The problem
of choosing A in DGIM is ome of ’ihamtrinsﬁ,c-tdeﬁectaﬁir‘z that algorithm;
Skelton does no%;vvgive detailed instructions as to the best way of making
that choice. The choice of the £,°s to be used in Jy is also a matter

of Judgement and trisl-and-errer, in trying to "mateh® the psrformance
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indices JN and J, in some senss, Once the éi's are chosen, however,
the FGM algorithm. can be applied to minimizing Jg automatically; no
engineering judgement or guesswork is necessary.

let us now consider the overall results obtained in the two
iteration sequences, It was shown that the PGM algorithm could be
sucecessfully applied to the problem of minimizing Jys Subject to side-
conditions in the form of high-order differsntial eqmﬁions. It was
also vorified that the DGIM a}.gori’hhm could be auac:eséi‘ully applied to
the problem of minimizing Skelton's wupper«bound performance index,
subject to the same differential side-conditions, Skelton had, of
course, demonstrated this earlier in [2.4] and [6.1]. A practical
.remz‘lt was that, if the 6%s in J}I wore chosen judieiously, tha gontrols
generated by using PGM to minimize Jﬁ were useful ones in Skelban’s
load-reliaf prdblem. The advantage of using this second, suboptimal
method in a practical problem was that the PGM algovithm was an sutomatic
one, and was knowvm to converge if the hypotheses of Theorem 5.1 wers

satiafisd,
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

7.1 Discussion of Resssarch

The research discussed in the previous chapters z-mls directed
toward the sclution of a typs of stochestic optimal control problem
(the “Jeproblem”) posed in section 2,2, Skelton in {2.4] studied a
specific case of the J-problem, in which .the paxfformance index was the
probability-apper-bound one discussed in section 6.3,1 and Appendix F,
. He recognized that a well-known “quadratic” control pmblmi (the “J Q-
problem" stated in section 2.3) had properties similar to his specific
Jeproblem, and that the known solﬁticn}tw the'ngprablem could be used
in solving his problem, The main contribution of the ressarch discugsed
here is the formulation of the J-problem as one of wminimizing a non-
linsar funebionsl on a set in & Hilbert spsce., In this formulation,
the Jgupmblﬁm takss on a special significance, that of minimizing s
linear functiocnal on the same set in the space, Canditioné wore de=
fivad in Theore: 4,1, under which the nonlinear and linsar functionals
toock on their minimum values at the same poirnt in the set., When this
occurrsd, the problems of minimizing the two functionsls were said to
be “equivalent.” fkelton introduced this concspt of egquivalence of
stochastic econtrol problems in [2,4]; however, the funetion space
approach discussed here gives a cleaver, geometric interprstation of

this concept,

A function space algerithm of Dem®yanov was applied to solving the
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general class of probtlems, and conditions under which the algorithm
converged wers derived in Theorem 5.1. This algorithm (the perturbed
gradient method) involved solving a sequence of linesr funotional
minimization problems to find the minimum of a nonlinear functional
iteratively. The P@ slgorithm, as well as Skelton's DGIM algorithm,
was applied to the solution of two example problems, Both algorithms
atts’.igad a given stopping condition in the first example (see section
6.2), which meant thet mumerical convergence was schisved, This also
meant that the equivalence conditions in Theorem 4,1 were achieved
numerically (i,9., within the desired w@%ﬁi&m& ae@rmy}, ‘f{‘his '
was a significant step in the vesearch, for the following reason,
Skelton had used his DGIM in [2.4] and [6.1] to obtain "gcmé" 1ead-
relief controllers, as measured by his probability-upper-bound perfor-
manee index (se:e section 6,3.1), However, dus to snormous consumption
of computer time, he did not make any attempt to contimie the eperation
of DGIM until the sguivalence conditions were met (even mmerically).
Thus, the success obtained in achieving the stopping condition and
minimizing the performance index in the first example showed that an
squivalent JQ-»prablam could bs found and that the squivalence concept
was a valid one. In the second example, the PGM algoriihm was used in
a suboptimal approach to sclvihg a losd-relief problem similar to the
one studied by Skelton in [6,1]., 7This approach led to good controls,
as measured by Skelton's “preobability upper bound" performance index,
Thas PGM and the supporting funection-gpace apprcach wers shown to be
useful in solving a practical problem invoiving a2 high-order dynamic
systes modsl., |
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7.2 Sugpestions for Future Investigation

The function-space formulation of the type of stochastic control
problem discussed above provided a useful theoretical framework for
the research recorded in this thesis, W,i‘thir;"this framework, a number
of important theoretical questions have noit been answered and remain

for future investigation., Some of these problems are as follows:

1) General conditions on the admissible control set and the
dynamic equations, which would guarentes the convexity of the set «
(ses Definition 3.2), have not yat been found. An approach to deter-
ﬁzining these conditions was outlined in s‘eaﬁon b for a special case,
but a general convexity proof is not yet available, Convexity of &

. is, of course, required in the derivation of aqﬁivalanca ccﬁditians
in Theorem 4,1, and is also required so that the PGM algorithm can be
applied to the J-problem,

2) The question of the existence of & solution to the Jwproblem
(i.e., whether a minimum value of the funetional J on w exists) has
not been answered., In the function space formulation, such en exise
tence proof would reguire some type of contimity requirement on the
J-functional, plus some t{ype of compaciness requirement on the set o,
For example, if J is 2 contimous functional, defined on a set & which
is compact inm itself (i.e., every infinite subset of & contains a
sequence which converges to a limit peint in ), then 2 minimum point

. of J on & exists (ses, e.g., (C.1)s ps 35}, Conditions on the Juproblem

which would guarantes that these requirements are met have. not yet
besn found,

. 3} Asgertion 2,1, concerning the known fumal;ssolgtién to the

"quadratic” preblem, has not yet been proven rigorously, as far as is
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known, The solution to the “quadratic” problem is a key slement in
the squivalence a;zncept and in the computational methods discussed in
Chepter 5, Thus, Maeﬂion 2.1 should be given further study, es new
results in stochastic control theory become available,

4) The hypotheses in theorems 4.1 and 5.1 are very strong‘ onps;
porhaps the proofs of the theorems could be refined so .that weaker
‘hypotheses could be invoked, For example, local convexity and com-
pactness conditions on &, plus other side conditions on J, might re-
place the first two hypotheses in Theorem 4,1, -
| In addition to the theoretical qnes*;ions discuszed above, a mumber
of computational problems are still open to investigations

. 5) The convergence properties of the Bﬁm algorithm (.intx"oduced
by Skelton and discussed in section 5.2) have‘not been given sufficient
study, The algorithm did satisfy the stopping condition when used in
the first example in Chapter 6, and has been used by Skelton to obtain
good controls, Thus, it scems iaossible that properties of J and «
which would guarantee conwergence of DGIM could be fourd.

6) More sophisticated procedures for finding the minimum of J
on the ”straig}lt 1ine*® between 31 and 8;* (in the PGM algorithm) could
be investigeted, The "walking" procedure used in the examples and
described in Appendix G was relatively crude, but effective, Further
studies of this "one-dimensional” minimization problem in function space
should be performod, especially concerning the trade~offs to be mage
between computational complexity and speed of conwergence of the PGM
algorithm,

7) A mmber of algorithms for minimizing a mnctzjﬁ;} on a set in
Euclidean space were described by ben'yamv in {5.3]. The possibility
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that some of these algorithms could be adapted to the function space
and used in solving the J-problem should be investigated.

8) As discussed in section 6.3.2, the PGM algorithm could not be
directly applied to the problem of minimizing Js (the load-relief
problem), due to difficulties in the computation of a solution to the
Riccati equation (2-23), Thesze difficulties should be‘inVBstigated
further, In particular, a good interpretation of a "quadratic" pro-
blem in which the coefficient Q(t) is identically (or nearly) zero over
a finite time period is needed., A solutiori to this type of problem
must be found if the PGM algorithm is tc-be applied directly to the
load~relief problem,

The research described in this thesis raises a few otﬁar questions;

9) The disturbance noise and measurement noise in the stochastic
problems considered wore all assumed to be zero-mean, That is, the
problems considered wers all “perturbation" ones, in which deviations
from some nominal trajectory were to beo minimized, Thus, the investi
gation of a more general stochastic problem which involves non-zero=
mean noise and non-zero initial conditions is a possible topic for
future research. Alse, the cases of Ycolorsd" disiturbance and measure-
ment noise, and of measurements which contain no noise (i.e., Nw(t)
is allowed to be singular) should be investigated,

10) In section 3,2, it was shown that the stochastic control
problems defined in Chapter 2 eould be reformulated as deterministic
ones, Using this fermulation, it is possible that some of the results
in deterministic conirol theory (such az the maximm principle or

dynamic programming) could bs brought to bear on the Jeproblem, This



118

approach would not require a function space formulation, and would not
make use of the known formal solution to the “quadratie" problem, It
is a valid approach, however, and could be investigated further.,

11) The idea of using the known solution to a particular problem
in solving a more general class of problems was found to be a powerful
one in the research described above, It led to the con;ept of
"equivalence" of stochastic problems, and to a rmumber of algorithms in
~which the known solution was a vital part of the iteration procedure,
The application of this idea to other classes of control problems may
be a fruitful approach, and should be invéstigated.
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APPENDIX A
ANALYTIC APPROACH TO EQUIVALENCE (SKELTON)

In his psper on wind-gust effects on launch boosters [2.4], Skelton
v;ierived necessary condliions for twe stochastic problems to be equiva-~
lent, in the sense deseribed in Section 3,5. The derivation ie répra«-
duced here to show the ansliytic method used and to complete the discuss=
ion of equivalence,

In this approach, the J-problem and Jy=problem are defined as in
‘ Chapter 3, except that the set of admissible controls isy

ey i3 8 linese Punction of vi;b;a
UL = {@wwmts 2(7), T €[t,,%) . (a-1)

and J is the upper bound index given by (6-34) through (6-39),

For notational convenience, an admissible control u will be written
in the following forms

= L(tv 3{?%5 T E[tost)) = L(tt 2) ® (A"’Z)

¥ow, assume that a selution te the Jeproblem exlsts, and is glven
by

w* = L(%, 2) (4=3)

Thet i, J is minimized over all admissible comtrols by L,.
Now, consider n psriurbatlon on Lt

L(ty 2) = L (t, 2) #+ ¢ L, (t, £) o (A=lt)
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where ¢ is & “amall” resl mamber, and I, is a linear function of ¢ and
g, Then L{%t, ) & an admissible control in UI.' Then it can be shown
that the respouse covarisnsce matrix S(t) (defined in (2-17)) can be

written az a polynomial in ¢

S(t) = 8. (2) # € 8 (6) 4 €25, (L) +eoot €75 (t, €) o
° % 2 R W)

As uubiomd by Skaltom in [2,4], 8 (t) is the response covariance matrix
vh:loh vosults ifu = L (t, %); the matrices Sye 80048, are dependent
‘5on L ‘and L, tut ave

‘en ¢, however,

dopendent of ¢s The last matrix 8 1s dependent

Now, consider the detorministic form of the performance indexes J
and Jp, as defimed im (3-16) end (3-17), respectively. Each index is
a !‘mntim of 5(t). Tims, 4if tho appropriate derivatives ef tlts(‘i‘)]

v a.n& fz[s(t)j in J axist and are contimaousy J and J, ean be written as
polynomisale in ¢ |

J=J° «%%Jl*s J«&ca 3(&) (a~6)
2
JQw Jz P8 Jé-& @E dg 33 Jg (e} (4-7)

where J° and J3 sre the velues of J and J,, respectively, nsing
W= L(t, 8) Then, as described by Skelton, J*, 9, Jg, and JQ are
funotions of L, axd L, tut are independe nt of ¢, The "third variations®
3 and 33 ave dependent on L, 1, and e

How, sssume that a quprohlm thet iz equivalent to the given Je
probilem exists and is specified by the cosfficient matrices Qg(i') and

‘ \
Q(t)s That is, L (t, =) ninimizes both J and Jo. Then it is clear thet
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Fagieo, (1-8)

tion of & and JQ

1ality of J* snd % is

iz that the

' gince’'a mecesseyy copdition for miniwise
"first varistion” of each equals ,
ssary condition for the eguivalence of 'him de syl

»anmh'z.ms - These “livst wariations” csn be wrilten in the form

ar T ot .
et [fé*“;sf"l"s@m] 8y(T) + .fﬁ [S?f?ﬂﬁ'}’}sa(t)] (6 at |
o .

(Aé?)
a5 = 2= {ap(1) 8,(1) + jﬁ Q(t) 8 (x) at} . (410)
(4]
Clearly, Jl = q% it
o 2z, 21, -
Q(T) = ggmggem and Q(t) = W!%(“) . (a=11)

.. These cvs ths necess.sy oconditions for the equivelente of the J-
and Jo-problems, These same conditions avs derdved neing the geometris
approach in Chapter 4; additionnl eondiiions ars placed on J to insure

~ghat these conditions are also sufficient, |
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APFENDIX B
DERIVATION OF RESPONSE COVARIANCE MATRIX

Onee K(t) 15 spacified, the response covariance matrix S(t) is
completely defined by the stochastic system equations (2-1) to (2-4),
the Kalman filter equations (ﬁule) to (2«13), and the a&or covariance
‘equations (2-1%) and (2-15), For comvenisnce, however, sn explieit
expression for 8(t) in tems of the nolse paremsters and K(t) 1s derived
. in this appendiz, The Ealman filter terminology and results are assumed

" in this derivation,

From (2-17), we have

5(t) = Br(t)r'(£)] . (B1)
If we defire
P(£) = C(t) = DILIK() (B-2)

and use (2-13), (2-9), aud (Be2) in (2+3) we have

£(4) = F(t)x(t) + DELIK(LTR(E]S) (8-3)
where E(tjt) is defined in (2-13),

So

8(t) = B{[P(t)x(t) + b(t)E(tfx(t|t)]

~ (Balt)
[x' () (1) + X (2]t (DD’ (£)1} &
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Kow, define

C (t) = El=(t)x(£)] o (B-5)
Also,

EE]6n' (8)] = H=(t5 (¢]6)] = B(b) o (B=6)

sinco R (the Kaluon filter steto estimste) and X are independent (see
Kalmen [B.1], P 32)s . The matrix B (t) is defined in (2-12).
 hen (B-%) osn be written

3(t) = [C(t) = D(L)K(£)]C(£)[C’ (+) = K’ (£)D’(¢)]
+ D(L)K(LIE (1)’ (8) 4 CRIE (LK (1)p*(2) ~ (B-7)
= DILIR()B (K (£)D/ (&)

wiich is the desived exprossion for S(t), Now, the differemtisl equatisn
which cx(t) eatistics will be devived,

In this derivetion, the finite-differenss represontation ef the
systen equatiens will be uszed instead of the representaetion in (2-1):

8x(t) = =(t + 4t) = x(t)
= L{t)x{ENt % B(th At + ATy o (B8}

whore Avy = %'(t 3 4%) w v{t), and v(3) i3 a Wiener process with indow
te svch that ’
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and Dif k= 1923§l0
{ (B-10)

Av Av, = '
E{%@%Mm] ¢ ‘Nv.(t)@t' ifk=0,

for all At > 0, te[t,,T), (t + lat) €[ty,TT.

The representation in {B-8) to {B=10) t}wn bocomes completely equivelent
to the represemtation im (2-1) to (M) as At 20 (ses, o,g. Kushuner
[B52), (B3, [32])s |

© Using (2-9) 4n (B-8), we havo

x(t 4 48) = x(8) + AG)x(E)st

(B-11)
= BEJK(E)R([t)at + avy
s How, fora
Cx(t + at) = E[x(t 4 at)x’(t + a2)] (B-12)
Ustng (B-11) and (B-9) dn (B-12), and noting that
Elx(thvy] = 0= E{ft(t)gv,g R (B-13)
we have
C (6 4+ at) = Co(8) = C (£)A (8)at + A(L)C (L)AL
w Ex(t)2 (5]4)]K’ (£)B' (8 )0¢
(B=14)
- Bt)E(e)EL2(t]t)x’ (t)]at
+ K (t)at + o(at) ,
vhers  1m 2848 o, (B-15)

At o At
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Now, nots that |
ktx(t)ﬂﬂ't)} = m&ltk'm] = G(t) - B(t).  (B6)

Using (B=16) in (B-lh-). dividirx both sides of (B-ll&) by A, and
takingthelﬂxﬂ.tasét"ﬁ, mln.von

a
..%.... @ [A.(t) - B(t)R(t)]C (t) # cx(t)[A' (t) - x‘(t)B’(t)J

: (B<17)
+ B(t)R(L)B, (%) + nk(t)x’ (£)B’'(t) + n,(t) .
vhere  Cyt)=0% ' : (B-18)

Equations (B=7),(B=17), and (3-18) thus define S(L),
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APPENDIX C
CONSTRUCTION OF THE HILBERT SPACE o

In this Appendix it is shown that the space o, definmed in Section
3.3, 18 a Hilbert space, Certain results from Danford and Sclwarts
3.4 will bo uged, o

© In[3.4], p. 255, the fo:mﬁg dofinition is givems
 Defimition C,}., The direct sum

=g @81 (C-1)

o;;ﬁhb.v@ctar‘syae@3~x;, xz,... I® 45 definsd to be the préénat space
‘of “the '8, in wirich addition and sealar mitiplicetion are defined bys

x'i-yn[ .,.x"]+[y1 yzw‘yﬂ]
e [ 6 7) &2 49D ou cx”wn .

(C=2)

amua[z?‘ bx’?".e. 2 ea,
.. sl (c-3)
= Bﬁﬁl am? »a.cmgﬁ o
whara z:, yex; <, y"exi 4 ® 1,2,000m, ond @ 15 & real sealer,
1 ﬁm x% are Hilbert spaces, the following holds ([3.4], p.256):
noﬁm.ma C;20 For sach 1= 1,2,04.m, Jot * bo a Hilbert space
mm the inmer product (evs)y 48 dofined, Tho direct um of the
H1bort spases X*, X2,,.. X" is the linear space
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I=t'e a1,
in which the inner predact is defineds
) = (2 L P A D
= i(xi: :s'f“)1

vhmx, yex; x yj'e x“' 1&1.2,...11.
The main result to be mdwia ([3.5], ps 257N

(c-4)

Lezma C.1
1f {x'}, 1 = 1,2,...n 45 & family of Hilbort speces, their direct
sum is a Hilbert space,
foshowwataiaamhoﬂsmn.htxlmmabawumhem
1%-space, whoss clements are of the form e, (t), te[t,,T], where o, is a
mmmml soalar fanstion on its domsin, The immer produet in XV
is defined ass ‘

T
(0(6)s 5y(2)); = L. o (2) 3y (t)at, (c-5)
o

wiere o, (t) and 5, (t) are both in X', Similarly, let X%,...X" also be
1Z-spaces, with elements of the form 6;(t), @,(t)yess0(t), Teal soalar
functions defined on [t,,T]. Also, let the immer preducts in

x2 x’....x" be defined as in (C=5). Since an L2-gpace is & Hilbert
space (see [C.1], p. 7&)-. eaehxi, A= 1y2pe0ek i5 2 Hilbert space, Lst
%2 pe ¥, k-dimensions) Euslidean space, on which the ususl soalar

~ product is defined, mx“laMammw(m. LN

;’x-;wmh [o.2), ». 155).
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Bow, identify e (t), 6,(t),.. 0, (t) as the k componsnts of the
vestor e(t) in (3-6); and let oF be the typieal element in XL, fThen,
by definitions C,1 and C,2, end by Definition 3,1 of 0, it csn be shown
that g ia precisely the direct sum of the X', & = 1,2,...ktl, So by
Lemma C.1, ¢ is a Hilbert space.
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APPESDIX D
DIFFERENTIALS AND GRADIENT VECTOR OF J(8)

In this Appendix, Theorem 3.1, which gives explicit expressions

. for the first and zecond Gataaux differentials and the gradient vector
| ar J(8), is proved, The following definitions will be used in the
prootc‘ )
Definitien D,1 (from [3.6], 5.35): If, at & € o, and for all
8 € o, '

Lo Lxn @) gy, g (p-1)

exi.sts, then VI(8, a} is called the Gateaux differential (or weak
differential) of the funeiional J at the point &, in the directien &.
Further, from [C,1], p.184, an equivalent definition isi

VIS, &) = %; J(8 + v8) . (D-2)
.‘y 4

Definition D,2 (from [D,1], p.675)s 1If, at 8 € o, and for all
| 80 % € o,

n VI 4 98, ) = vies, 1) = V23(3, a.-ﬁ)

40 ¥ (D=3)

exists, then V23(3, 8, ) is called the second Gatesux differemtisl of

_ Jat the point 3, for inerements 8 and fi, From [C.1], \p\.189. an
equivalent definition iss \
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2 & an - S & 2
Va8, 8, 1) = g5 1@ + 9%, D (D-t)
, y = O
The soveral perts of Theorem 3.1 sre then proved as follows:
1) Using the defimition of J in (3-16), and remembering that
8 = [8(1), 8(£)], & = [op, o(t)]. we haves

T
I8+ ¥8) = £[8(T) + yopl + ft £ol8(t) + ye(t)]at .
o

(D=5)
Use: (15»5) 3n (D-2) of Definition D11
: ‘(J@, &) m%; £,0s(T) « ’y@F} =0
{D=b)
* f L. ¢ rat) + va(t)] dt |
%, dy "2 | L, = 0
But now
a ofy & (y)
&y fll:ﬂ(T) 4 ‘)"@FB !? -0 = "é';' [g(‘)’}l % m&;ﬂ“iy - Q’ |
(D7)
where  £(¥) = s(T) + yep , (D~8)

avd the dot indlcatos the Puciidsan imner produet, Cavrying the indi-
cated operetions in (D7) thevugn, we haves

. ¢ [s(T) + ye,] mzi[s{'r)l e (D=5
@ b y = 0 s A 2

ar.
vhere 5?&} is defined in (4=08).

Similexly,
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d of,
& Tle(t) + yelt)] yeo 5 Le(td] o o(t) (D-10)
3

for evory t[t,,7], and where y=%- is aleo defined in (3-26), Iote
that the above partial derivative vectors exist by hypothesis,
Now, define the vectors |

Ef 31’
DI(8) = 525, g5 ﬂg (-11)

tha‘h M(s) € o for avcz*y § € o, first mote that 2 contimous
w é!‘ & meagurable function is measursble (see [B.E}, p.238).
3L

1t s Gva. a(t) is Lebeszue meosurabls: since gmg is eontinuous in s,
3L, 8 af.

af,
Ty 4is measurable and [|[DJ(8)|lo is well defined, Since 3-3-‘- and 3»3- are

asmd to be firdte for every 8 € o, ||DI(B)]lv is finmite. Thus

BJ(%) €g bg Definition 3.1,
k¥

Mz is nessurable, the integral in (D-6) is defined, Using
(D-9) and (D=10) in (D«f), we have:

af [ﬁﬁ.‘)j T af [&(1‘3)]
VI(8,8) = wmwm o Bp o+ vwmw . e{t)dt ,(D-12)

Sinne

Then, by (D=11} azd the inner preduct definition (3-10),
V38, &) = (DI(B), &) , (D=13)
ﬁhieh proves pavt 1 of the Theoren,
2) Using i = [Ny, (£)] in (D-12) results ims
%fl
VI8 + 8, ) = 5o [s{?) 4»‘7@53 o 'ﬂy \

T af v (D-1t)
L 2 kY

+j’t 522 [s(t) + yo(8)] . (t)av.
(4]
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Then, by (D-4) in Defimition D.2;

P W
Vo, 8, 0 =S 525 s + yog) o

T af. (>33
d 2 e
.,.j = [a(t) + yo(t)] o M%) .
s ‘
t, dy l? =0
Int
B ﬂFl
F
2 2 T
T N A N >
. F &
k )
L i an i

Then the first term on the right side of (D=15) becomes:

a ¥
TERM 1 = 5 W[ﬂ(ﬂ.‘)-l-‘yepj . ﬂrlyuo
x ar,[a(1) + yog] (D-17)
) :'i;l & nFiL’ =0
As was dore in (D-7), we can write
oF & (y) (0-18)

4 .
ML = =800 Yoo

oF, af
where £(y) is defined ia (D-8), and == 1s defined as was 5, Carrying
the operstions in (D-18) through results in

¥
TERM 1 = 5—;@[3(1)] . o (D-19)
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‘lhmag latging 3? be m ;l'hh conponent of eps and using the

defmmn of 53:, we m@.

ok 2% |
£
g"‘““ {3(?)} ™ @F Z 5%’%;; GF" ¥ (D“ZO)

Combine (D=17), (D=19), and (D~20)s

k k5%
TERM 1 = Z ZE?'%E-“F”F‘ (D-21)
=140 +d i 0§
o azf .
. Using the definition of =% in (3-26), (D-21) becomes:
af , 3%, [s(1))
%; gﬁgg"" [e(2) + yogl . ‘ﬁF‘ ......,%.?_.... .« g
Y =
(D-22)
31315.1@.?1&, 3t esn be shown that
4 3% 2% La(t)]
&),g"““ [s() + ve(®)] « n(t) o ""‘“‘T"" e(t) . n(¢)
‘;y =
(D-23)
for every t@[ﬁ@ 5?3 @
Define the vechbors
2
a i’
‘ 2
It can be shmma?m‘i; Wﬁ o(t) is measurabls by the same argument used
8

'in the case efu-(—z;> in the first part; of the proof, So D J(ﬁ,e) €0
by Defirdtion 3.1. Using the inmer pm@:zwt daﬁm.tien (3-10) in con-
Junction with (Du15) and (D-22) to (D-24), it famws that
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vas, & W) = %8, 8), N , (9-25)
ard part 2 of the Theorem is proved,

3) By ascumptisn, DJ{(8) is coutiimous in § in the g-nom, Thai
is, [[D3(8;) = DI(ByMllo = 0 &8 ||B; = Boflo * 0. To show that VI(d, 8)
is contimious in &, use the Schwers insgual

[V3(8,,8) = V3(8,,8)] = |(DI(8) = DI(B,), 8}  (D-26)
< D383 = D38 e 8o

Then, by the assumed contimity of DJ(8) in &, it can bs seen that
iv:(-a‘i,“é) - V3{8,,8)| goes to ﬁém as ﬂ;ﬁ;l = Bfle * 0, (By definition,
"4t 8 € o, [|8]lo is finite). Se VJ is coptimous in 8, The contimuity
of Vzé(ﬁ, 8, ) in & ean be shown inm exactly the samwe way, and so the
proof of Theorem 3,1 is complsto, Q.E.D,
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APPENDIX E
LAUNCH BOOSTER EQUATIONS

in outline of the derivation of the launch booster squations and
wind filter equations used in Section 6.3 is given in this Appendix,
M derivation follows that in [6,1]. The vehicle equations modsl ons
axis of the booster, and have been linearized about & nominal tm;}a&;
tory. It is assumed that the vehlcle is a2 rigid body, and that fuel-
. slosh and engins-inertia effects can be ignored, '
. The configuration of the wehicle and the relevant coordinates are
shown in Figure B.l. Drift is measured along the y-sxis from the nominsl
trajectory, and the pitch angle § is measured from s reference 'ciiractim
along the trajectory, |

The linearized drift equation is as follows (with B, @, and &

assumed small):
2 s
USH = (F- D)+ B + jz T wdl, (8-1)

where M = vehicle mass (kg-secfm),
y = drift from nominal trajectory (m),
f"ezz total thrust of engines (kg),
D= vehicle drag (kg),

ng gimballed thrust {(kg),

gﬂc side force on missile per unit length per uigit angle-of-

attack (kg/m), \
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reforence
direction

. vehidels e.g,

Figure E;1l, Booster Modsl Configuration
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a(,l,,t) = angle of attack at a distance £ from the tail of vehicle
(md}s :
L= vehicle length (m),
£ = distancs from tail of vehicle (m),

¢ = piteh angle deviation from reference direction along
trajectory (rad),

B = engine gimbal angle (rad),
- The argle-of-attack is given by

v, (4s8) = §(t) = (4=t ()]4(x)
Q(&,t) = ¢(t) 24 "Q)' z V(t) ¢ ' (E-2)

where
v (L,t) = wind velocity component orthogonal to vehlels at e
distance 4 from the vehicle tail (m/sec),

%o, = distance from tail to vehicle center of gravity (m),
V(%) = nominal vehicle velocity (m/sec),

The pitch angle eguation is given by:

_d% . f’. dfg ,% :
- E— 4 i E"*
L Flogh * (4=t ;) @by (E-3)

where Ip = pitch moment of inertis of vehicle (kg-vm—aecz).

Dafine the following termsy

L dF
Fy = o wj“jj' as. (B-l)
= gorodynamic side force due to & unit angle-of-attack
(k)
=
FA’"’P = o o (.&-.@cg)dl (E-5)

= aerodynamic pitching moment due to & unit angle-of-
attack (kg-nm),

where .ch = gerodynamic moment amm (m),
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JJ. dE‘
‘= aerodynamic pitching moment due to a nnit pitch rate for
unit vehicle velocity (kg-m2),
Then, substituting (E~2) into (B~1) and (BE=3), and using the above

definitions, we have (with the dots indicaling time derivatives):

e (B =D, 4 F,) Fy
¥ = —— & ¢4* ﬁ-mr(t)
%) XL v (4,t) dF
Acp 4 1 Y Ty 8
- 00 W")*EJ: WEy™ “a U (E~7)
w Fyt F,4 .
4 ep Ae
= ¢ - ﬁ:ﬁeww y(t)

L v (8,4) dFy
T@mwm ST B Ut (E-8)

The structural bending moment {in kg-m) at s distance Ly from the
tail is given bys

drF
Ib(.ﬁ )= ?ffg::a g fz - E(.&wﬂcg) Gl + Gz

(E~-g)
4 (zcu.z yn (,%O»,a 7] eds,

where

Mﬁ = Fg[‘e‘e + Gy - G}.'q'cgj  (kg=m),

To + Hy(oop = ‘e‘@%)u’ocg = 45)
G = I :
P
G = Mo(zmg - .@o) ,

2 wo
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| 1i£0€4< 4,
it ~8) = {

Oif£>1o *
Ho = mass of section of vehicle from the tail to £, (kg),

zwg = ce:zt§r of gravity of gsection of wehicle from tail to
£ {(m),

I, = pitch moment of inartia of vehicle section from tail to

\Define the following terms:

Ma j& -2 [ (4 z ) G 4 G + (2 -z)p(!, -£)]de (E-10)

= gtructural bending moment at Ly due to a unit angle-of-
attack (kg-m)

= d‘Fs
My = f' 2 [(Umtg)Oy + Gy + (4ot (£,m2)] (Ut )it

o
{B-11)
= ?tmcgural bending moment at Ly due to a unit pitch rate
kg-m<)

Then, substituting (B-2) into (E-9), and using the above defini-
tions yields:

Ha\ & }f‘ ]
Tp(ty) = M + Map ~ 5y ¥ = ¢

L v (z +) dF,
+ j‘ W"" - 2 [ (e ﬁ,,g)Gl + G, (B-12)

+ (L=t )u (8 0)1d2,

The integrals in equations (E~7), (E-8), and (E-12) must be evaluated,
_This was done in [6,1] by sssuming that the incident wind loading could
be represented by the output of a filter driven by Vw(L,t\% Dafine the

y
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load filter state variables to be 7, 1,, and ?b(dimension}yasa}, Thy
the load filter aﬁmﬁiom are

ks V(Lnt)
= - Kt gy 4 2 (@
1oh

w } % ‘ 5v, {I‘ut)
i - 4, - é%fl% - =4 (51
ﬂ3-"= 2 7}2 w m’ﬁ;“ * (B=15)

" ﬁhnra Eland Hz are given constants (units of meters), Thus the irie-
‘grals mentioned ure approximsicd by

JL *v(ﬁ;('g*é‘) daF -
. VYT G af = Fﬁ[ a’lﬁl + az'q 2:} (5-16)
J‘L v {,ﬁ ,L} . dF&S ‘
Jo VEYT @ (nlegldt = Fyleghy - al] (8-27)
Jl’ '*Uj(:z'g%dj d?a
o TVETT G [Uetegliy + G Ly = Lhullg - ]t
{E.13)

=M lagl a6l ds

where the gi@s ave given unefficients (al, oo Bzs and ag are dimension-
less; aq and a, have dimensions of meters),

In [6.1], it was fourd that the incident wind, v, (Lyt), could be
represented by the output of another set of filter equations whoss
Ast.atea are oy ard @, 8
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and
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, Vw(L';tv) = Uvﬂls (B-19)
&l = thjné + cl\/vl; n(t) (E-20)
&2 = - thsml - th',‘mé + em n(t), (B-21)

n(t) = white noise input with unit variance and zero mean

-Vh = vertlcal component of wehicle velocity

9 Cos Cap €9 C. = given coefficients,
Gyr Cpr G0 G G5

~ In this booster modsl, the control u is a scalar which drives the
gimballed engines, The equation describing the gimbal actuator dynamics
. is assumed to be; * '

B = - 14,68 + 1.6, (E-22)

The bending-moment rate will be of interest when the response

vector is formed,

Differentiate (E-12):

ib“o) = ﬁqsé * Mua + ﬁaa + Mﬂs
» MQ ‘1¥.,0' d *
& @i
. (E-23)
- 594 Blagy + ap) 4 dpalhy

+Madl, + Nady + Mad,
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Then, essuming that ‘5}('&)” 5.5, and ;6 are negligible, and substituting
(B-7), (E-8), (B-13), (B-14), and (E-16) to (B~22) into (E-23) results

i

Ib(ze)xn§§+a¢¢4~n,;¢+a‘as+nmlﬁ

(B2l )
4 Rnl My * H,qznz + _%35}3 + 14,6 Mﬁu.
where . : po
, M HWF Y A
R,,...ﬁi.;..«..&*&é?‘ia (B-25)
y v : ‘
we 1V
-4 i - "2
Rg = : .
Fob HY  MATS .
SRR R (-27)
Ty
. MF MxE 4
Ry = M, - 1 Mg ««%54»-%%% (Ew28)
P
2 8 0.
Rm - LY oy . ‘&H@&B (E-29)
! 2
o M, MaF, . Va
Rnl”“%as””gﬁ%ﬁ‘{%%j“%as (B-30)
: i
. M F.a aF .8 Va
By amwas,.%%ﬁ*w,ﬂ{%,& (E-31)
2 P 2

2 - Wﬁﬁvm 2
3 3 2
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It is convenlent to summarize the above dimsaiaﬁ by réwxﬁting
“the vehicle eqﬁaﬁiens. wind loading qumti.cns; and wind ﬁlﬁér equations
in the form of & asei _éf’ firvst ordor linear differential aqmtio@,
These eqaatiom can then be easily transformed to a‘,sté.te squation in
vector-mitrix fom by letting the systea states be ¥, ¥, ¢, 9, B, )5
‘mz', ,'ﬂli, 'na, and 733.” The vshicle drift and pitch angle gqmatians Ware
found by substituting (8-16), (8-17), and (E-18) in (B-7) and (E-8),
‘Launch Booster State Bmations

F-y (8-33)
afy) Fo s (Fg= Dyt Fy) Falep o
d‘tm”mt 3’%@)4’ W ¢"Mv(t)¢
] . (B-34)
F.a
! 4%z
2.5 (B-35)
a(g) Ffﬁ@p - Eté’iﬁc:g é 9 é
dt I V(t) 1 Ip’ﬂ‘%:}
F‘“!; F F (a0l
8 a
wB8Bg Ady LA Eq
i S AR
P P P
R =146 + 1.6 (8-37)
ez 10 )
e Vo, + e/ n(tf ~ (BE-38)
?.22 o Voom, oV oown +e/b n(t) (B-39)
T s Tl ' O gy PE
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Tﬂ-'—,%)"ﬂl*' (B-40)

) 6v(t) -
Al “z E N3~ H @) (B-t1)
2 2 2
-mﬂ ' (B-b2)
dt B, 2 n "’1

The system responses considerved in the example in Section 6,3 are
Y. 5‘. 848, Ib, ﬁ. and ib’ Uging the above derivations, the equations
for these responses arei

Launech Booster Response Eguations

rn=y (B-43)
rz*—f;;' (E«-—M)
r.=§ 13 o (B4
5 ""vy“'¢"‘7“”l =145)
rugﬁ (E-U6)

M o
[ A ' p
”S”Ih”“m-‘”“a“‘%mﬁ‘“%ﬂ

(B-47)
& Mma5n1“+ Ma‘énz
rg=5 = = 1468 + Lhbu
r7=1b“R§W*R¢¢*Ré¢+RBB+Rw1‘”1
(B-48)

+ Rnl'ﬂl + R.nz'flz + an’ﬂa 4 14.%&1,

where the R-cosfficients in (B-48) are given in (E-25) bo (B=32),
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The rumerical values of the coefficients used in the example in
Section 6,3 were obtained from reference [6.1] and a NASA document,
"Model Vehicle #2 For Advanced Control Studies,” The latter document
is a data package supplied.by Marshall Space Flight Center, containing ‘
information on on2 model qf a large ﬂexiﬁle booster, The values of

the constants used in the system ami’responso equations are:

H = 26,67, H, §= 100, a, = a, = 1/2,
| -2 -7
e = 1.378 x 10 , c, = - 9,633 x 10 °, cq = 1.0, { (B=-49)
wli w8
ch_zzl.QxlO ,05331'%3](10 .
The values of the secalars ag and ag are given by

a5(t) = 1/3 + 2/3 (13g)

(E~-50)
24(t) = 2/3 = 1/3 (5%5)
The scalars a3 and 8, are defined by
a5(t) = () = £ (1)
(E-51)

P(%
a,(4) = 0.3, (t) = "fg;&) .

where 4., and Fy are as definad above and P(t) is a given time function,
The values of the other coefficients in the system and response

equations ave defined by Table E.l, This table gives the mmerical

values as a fune‘hion of time of ths guantities CFI' CFZ”" Can,

which are defined as: | |



S
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Table EL

Launsh Boostesr Oosftisionts

1 S NPT

2:44F 08

lg?éﬁ'ﬂﬁ

Eh - I 3 55 60 9
- Do DOE 0D ~1+67E-D3 ~8sIZE~03  ~2400E-02 0«00E 00  ~6e00F~p7
B, OOE =N ~ R g4 F =B =Ty 19F~nx =1 nBF=nG N NAF=~Nn “1e256F=ns
C3.50r-n1 3.,6Te-01 3,83r-01 L NOF=-nl Golbe-nl G,6TF~nl
“HWBOF-00 2433F~-n3 5,6TF=03 9o83F~n3 Lat5E=-02 1,17F=n2
B e Gh4E-00 6,55F«n0 T,50F-00 B,13r-an D o EE~N 1.n3F nl
“le21F Ol 1,33F 01 1.67TF 01 1.63F 0 1.83F 01 2,05¢ 01
4e28F Q7 bo22F BT 4ea31F 07 44378 n7? &.34F 07 4,31F a7
N ODF 00 . B ONF NG 2.67F 06 7.83F nb 133 07 1o 73F 07
Qs 00F 00 1.16F 04 ‘2,537 04 Lga21F Db 4,92F 04 3,42F 04
Ne00F A0 Te20F D& 2,16F 05  84,32F a5 5,81F 05  «h 4B8F 05
Naa0E ndh . ALnnE AN o 14338 08 =4,41F nd ~2,21F 64 N O0F NN
O GOF 00 6.,6TF 0O& 1.63F 0% B3.21E nd 5.008F 05 6433F 05
2:00F~01 Ge33E~02 4aF2E02 3023E~n2 3.20F~02 3anBE~02
0,008 ~00 3.75F 0l 1,02 G2 1.74F n2 2463¢ 02 3.56F 62
Lo 24F 0% 3.94F 05 3,65F 05 3635 05 3.05F 05 2« T6F 05
~2e19F=07 “3 o 2BE~nT ~5 4 93F~07 ~1¢16E~n6 ~2O6F~06 ~1s10F=n7
N.0NE 80 ~3,91F-n% -6y BTF~NG “1e25F=n4 ~TH0E~08 1e36F-04
1,008 an 1, 288-02" 26 56F~02 b4 22F~n2 %o BEF~(2 He NEF -2
0. 00F 0O 4o,61F O] 1,07¢ 02 1.906F n2 2483 a2 4, 46F 02
0, 00F 00 8,33F-02 f4a01F=-0L 1,21 no 2o77F 00 3,85F nn
0 00F 00 3,80F 08 B8,9nF 0% 1.588 nt 2675F n7 4,65F 67T
2.85F 08 2.,79F 08B 2, 75F 08 2,69F 08 2.63F 08 2,53F ‘08
% (ees) o0 108 130 8 190
“fs OLOF ~037 ~ s APE=AQ ~1aRAF w0 “q A ONE~AD AeBHE~NN
=1 o OGF N4 ~4 4 OET =15 ~1 e 2RF=8 OaINE~ a0 e OAE=OO
Se17E-01 B E3F~N1 T i03E=03 Qel7g~nl 1¢58F~n0
T O0E~0% ZJAF~NY 1 NIAF =032 214 33F-n4 N NNF =An
l.21F 01 1 38F 01 1.53¢ U1 1,948 ol 2.38F 01
2,337 01 2,70F 01 3,17 01 3.77F ni to63F 01
4eBGF 07 4. 81F O7 LolF 07 4,728 o7 Te28F 07
B.87F 06 4, 17¢ 06 1:,67F 06 B433F NS 3,33F 08
1,21F 04 Ee33F D3 1,05F 03 50256 02 0-00F 00
~1e28F 05 %o 46F NG 9 89F 84 . —4,ROE 064 NeNNF N0
3223F 05 N NOF O ~8e91IF D4 = 484 NS 2459F 06
1,178 05 3,36% 04 B,8%6F 03 5,008 02 6o NE 06
1433F=02 bouhTE=N3 by &TF-03 ZoBNF-0T A NOF~An
e BEE 02 Bo4bLF 02 bi4ZF 02 7234F 02 Ba5BF 02
C ZatbE 05 2:156F 05 1:87F 05 1.57TE n% 1,28F 05
7. B0F~08 o6 1F=n7 35 LOF-0A O, NOE N N 00F 0O
L ZeFUE 0% ~HeIBE-OE NeINF () 0,00E AN DeNOF OO
Z016F-017 8. 10F~H3 2o BNF~03 o ?BE~N4 N 00F 00
Hebbr 02 9 27F 02 1.,28F 03 1.72F a3 2.34F 03
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CF, = &SP CF. = -A.SB CF = -B-SB
1771 2 IV 3 L
2 P P
F F FoD
A : _E .. v
CFlP -] v CFS = CF6 i
CF, = CF. = Mat CF,. = -p-lg- :
7 =¥ 8 9=
. ’ Marqv
wxof s =1y CFip=v— (8-52)
sy
F o= =
¢ 13V CFy, =V, CF, = M
H M e
'] ) R
CF16 = ¥ CFyp =% CFig = Iy
Fy
Chg =V CFpo = =& CF, =P
CFzz = Ip 8

The wvalues of the Cﬁ‘i for intermediate points in time were deter-

mined by linear interpolation, using the given values in Table E.l.
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. APPENDIX F
A “BOUNDED-RESPONSE" STOCHASTIC CONTROL, PROBLEMN

' This'Appendixz outlines what can be called the “bounded-response”
stochastic control problem, which was discussed by Skelton in. fs. 13,
Tha performance index derived hero wag used ﬁ.n ths mmﬂlmpl 5

Chapter 6 to évaluate the perfomnce of the lsunch boestar.m 18. "
" An f-dimensional response vectoz- r was defined in (2-3). fna Ms
. problem, it is desirable that the magnituds of the ith component of r
be bounded by a given value, say Yy Since r(t) is a Gaussien random

varisble with a nonzero Vamme, it is not meaningm to place a. hard
comtraint on r. So the constraint on r must be & probabilistic one,

2‘0' formulate the bounded-response stochastic problem, first define the

folflcwing, svents:
a; = {event thet !ri(T)! <'fi} v A= 1,250k (F=1)
b (3) = {event that Iri(t)l éyi and
& I, ()] > 0 exactdy  times in (F-2)
“a”f)} si=k4+ ;.,,.z .

where the yfi are positive raal\mmzbers. and T is the given terminal time
for the probleﬁ. Note that the first k responses are to\ bs bounded at
.tha temiml time only, and the other responses sre to bm bou;ndsd during



152

vg.ha time interval of interest. A probabilistic performance index for
Ji’his, problem is then defined as

P | :i:: 1=~ Pr{al. B‘g::éoakp }%i‘(m'if‘bz(a)} (F=3)

= probability that at least one terminal response

falls outside its bound or at lesst one of the

last (f-k) responses falls outside its bourv:l at

least once for tﬁ[t T
Then the boundsd-response problem is that of finding the u€U (defined
in (2-9)) such that J is minimized, subject to the system side-condi-
tions (2-1) to (2-8) and the Kalman Pilter side-conditions (2-10) to
(2-15).

“The problem as stated above is a difficui‘c. one, and has m‘f; been
solved to date, However, it is possible to find an upper bound to the
performance index in (F=3), and the pfo}:l@m of mininmizing this upper
bound is a simpler one, lLet

mutber of times |ry(t)] > v;.

By = 1tels,,7)y & = ktl,00 s } (F-4)

Then we can dsfine 2 new performance index
£

k Jann

where 2 is defined in (F»l), 5.3 the event that a, does not occur,
and Pr () is the pm‘fmhm’gyﬁmmtor, Tt can then be shown (see

- [6.]) t:hs.t for a és‘@n@"m}if}nm@h&aﬁe process, J o 18 an upper bound for
T |

i3, (F-6)
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'l’he advmrbaga of minimiming J instsad of J is that an explieit
expmasinn for J  can be wri.tten in terms of the response covariance
| vmm 8 (c{etined in (247)), i Aliisq. it can be seen from (F-5) that
- J is itself F maaningml ~perforﬂié.mé ‘ind;ax; 50 we can have some
| ,assuramé that mini.mizing J will result in reasonahle system perfore
v’ ‘mance, 61‘ course, the optimal J must be small for it to be a mean-
- ingml nmer ‘bourd to the probability of the event in (F-3).

"’T ﬂ ’expmss J in the simplest form, we raquira that the response

od .’m the following menner:

Tty Ty Ty aeeeny] (7-2)

o “ﬁ"”“r“k) = (4-4y)y end

rl'.rz,...rk = responses which are to be controlled at
S o the terminal time,

T ' .‘1' sssel, = rosponses which are to be controlled
TR tor time t[t,,T),

NG N T

= uncontrolled responses which give
values Of I“i(t). i= k"lps.nz .

The first "l responses are the only onss of actual interest. The last
(_.cieyk) _responses are uncontrolled, which is equivalent to setting ¥,
arbitrariﬁ large for i = 4,41,...4s Thus

E[ ] = 0: & = ﬁgl"!‘lsbtqi 3 (F—B)

Bo (F,-vS)?»caniba rewritten
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k 1
Ig = |5 Pr (ay) + iy, TN | (F-s)

which indicates that the laa't (2 -k) responses are not dimatly econsid-

srad in the peri‘omam@ indeaz The reason for including them in the

response vector is that both ri(t) and ri(t), 3 = k¥lyeeod, 5 mst be

| cheahd to gses if the event b (3) occurs as defined in (F-2), Specifi-

c&l].y. E[Ki] for i = ktlyaesdy 15 2 function of the quantities

Hr (£)1,. Hr (t)r ()], and E[ri(t)], where E[+] denotes expectation,
The complete expression for J, can be derived (as in [6.1]) by

axtandingthe Rice zero-crossing formuls for stationary Gaussian pro-

| cesses given in [F.1]. The resulting expression isi

Uy .
Jg = gy[8(D)] + jﬁ g,[5(t)]at, (F-10)
[ ]
where  S(t) = Elr(t)r' ()], (F-11)
k Y
[8(17)] = 28 (- 2 : (F=12)
sl = ), 2 )
£y,
g 8] = ) 2R ), (F-13)
RS
_ 2
awa] T, (e-1)
2 A
o o3 exp - py /2 "ﬂ Ay
and {“”‘Fg___g; ""“Fi“u(&';)]} ,
(F-15)
M w2, 1/2
,pia__"_iei, ain[uzi,.ﬁs.;i. / , (F-16)
Mli 14
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el
Méi = Et"img‘i(*‘ﬂ = E[ri(f)ri%l_k{ti} . > (ra7)

8o J, is a2 function of the covariance matrix S, and is a special

case of the performance index J in (2-16), Therefore, ‘the problem of
: minimizing J is a special case of the general problem stated in Section

2.2, e
_ L e - 331 ‘
 Expressions for the partizl derivative matrices 3 (T) and ---(t)
will be given below. These exprassions arve nesded 'i:o form the gradient
,of J_ (from the definition in (3-20)), '

n 3g 352
DI (B) = [«gﬁcr). g‘;(t}],g s

‘which is used in the computational algorithms in Section 6.3. The
3 3
vectors W(T) and 3"’-(1:) sre formed from the camspending matrices

by the "stackmg" procsdure outlined in section 3.4. We haves

2
Y, expl~y, /28,
i (i m).ifiwjandigk

R T .A.i .1,,,& _
B, (F-18)
Al 0 , other 1,3,
‘ agz
The zna’orix is mzpress@d in the fellawing Ay, The only nonzero

g bg og d¢g
2 2 2 o2

s o= s 3a o » and 35— » where
| ¥, ‘s, tes S
L moem kRl k200009, and n = m(ﬁlwk « The ahove elamms arot

slements in the matriv ave

N



2 em(-frm/ )

LT KDL D /a;' :
h gezp- m ﬂ) R

eaewes

(F-19)
(F=20)
(F=21)

(F-22)

(F-23)
(F-24)

(F-25)

(F=26)

The quantiﬂm lﬁ, ﬂm' aml o, are daﬁmd in (F=14) and (F-16),

&s m smmplu of the abovva pmeoehme. suppose r is formed such

thnt k = 3,
have the fom:

"l e 5’ a.nd " = 7, ﬂmn the partial dsrivative matrices
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o O o
(o B » S -
= T > B =

o O o O o

c O O O o

and the elements are computed as indicated above,
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APPENDIX G
COMPUTATIONAL TECHNIQUES

The programuing methods and computational techniques deseribed in
tl;ia Appendix were used in the two example problems disénssed in
C'hapter 6. | The philosophy used in writing the programs was to keep the
,emputatiaml work as simple as possible, subject to the aacm‘aey re-
quirmnts of the examples and the considerations of mputatinml timm
The good results obtained in the examples in Chapter 6 indicate that
_ the techniques used were guite edequate for the purpose of illustrating
.the PGM and DGIM algorithms,

Progremuing was dons using the FORIRAN IV language, and the ﬁegrams
were run on the IBM 7094 (for example 13 and CDC 6500 (for example 2)

conputing. systens,

B.1 Solution of Differsmtis) Equations

The implemontation of the PGM and [GIM algerithms incinded the
task of solving seversl morlinesr matrix differentiazl eguations, Thess
equations are as followss

- a) -the matrix Riccatl equation, which is given by equations
(2-23), (2-24), ard the definmition of K*(t) in (2-22)., Given the
paraméter mttié@s A,B,C, and D, and the quadratic coefficient matrices
Q(t) and QF(T), the Riceatd metzix P (‘%:} and the optimal feedback
coefficient K¥(%) had to be compuied, In the dascriptiop of the algor-
ithms in Figures 5.1 and 5.3, this procedure was called é@.w the qi
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problem, yielding X, *(t)." The fanction space element § = Lagea(t)]
&eﬁé‘i&s,vtﬁe watrices QF(T) and Q(t), as is poted in Section 3.4, and
K;(t)i-is dsafi:a@d in (2-»22). The subzcerip‘a 4 refers to the ith stepge
, §£“ ‘thé iﬁem‘tim pz%%mg
b) the ertor covariance eguation given 40 (2-14), This eguation

hﬂ@'t@ b@ solved for %z‘;l{{(‘i:,)ﬁ woleh 18 & matrix function needed in the
sta‘ba eovariance equation (3-3) and the response ac:mriénca equation
(3,

'!‘:ha state-covariance equation given by equation (3-3). This
mﬁﬁmxwas gxéz@fi in the procedure in the algorithms ertitled, "Find
3;#:-%@%&@ from Ei*{t)a" Pirst, Ki*(t} vas used in (3~3) (in place
éf K(t)) to oblain Cfﬁ’{'i;}. The mebrdx Ek{?;) in (3=3) was found in part
;:f) *'abaira;f Th@x:, Cx('i:.) and .'K:k.&(t) wore both used in equation (3-1) along
ifﬁ.t.h E,két} to obtain the resphnse coveirience mabrix 8% (%), Which’ma(
then wmémﬂd o 8 iﬁ by the “stacling” procedure described in section
3ebe  The A0 §n the above discussion refers Lo the solutica of a
JQ-?pm&mm ard “us subscript 1 rvefers to the ith stage of the itera-
tion process,

In both eramples, the above eguations were sclved by using digitel
mmerical inbegrstlon tochrigues, In thes flrst example, a fourthe
Qrd@f m@“gﬁiﬁ%ﬁ pethod with & f£ived siep size of 0,02 seconds was
used (;%;;hé total time interval was 10 ssoonds). This method resulted
in a cumputer tine-psr-iterstion of 75 sse, for PGH and 40 see, for
DGIM on the IEM 7094, These iteration times include ths mumeriecsl
intagxmti@n of the abwve equatinas and the computation of the new Q(t)

% -
~and Qp matrices, UThe iteraticn times wers acceptable, ag was the
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éemmay ef the é,mggmtiﬁn %@hﬂi{{m (as measured by halving the step
'sim, rammui.ng & few ...Wtiam, and empming the resuits), So no
fhrtbm' refinement ef t@@mme ma mmmd

" The task of solving the differsntisl equations in the second
axa;npl& was o mach more aifficult one, because the high order of the
systom and the timsevarying nature of the cosfficients resulted in
extremely long integration tiues, even on the CDC 6500, The integration
mwbhad finally deoh éed upon after much experinentation was "blm simpla
Eulmr rethod (linear @rtrapalatiun of the d@ﬁ%ﬁ%), wfi.%h a s |

step size of 0,01 seconds, -The ﬁﬁt&}. pm@l@m £ime 'sma 3.5@ sﬁmm%e |
Other integrstion methods, such as Rnga»ﬁmtt& and Homming pmelizztw«
: eomctor were tried, but they took tw o fm:v.:z' times as much empuw
tional time s3 the Fuler methed, using the mzﬁ@ basic step size, (The
computational tifeza needad o integrate the warlous differential eguations
is diseussed below.) It was found that the results of the numerieal
integrations usinz the ihree methods mentioned above were quite compara-
‘ble when the busie gtay #fzs of 0,01 ssconds wes wsed in each, There~
fore, the Buler meihcd was chosen mgaus@ of its speed and simplicity.
Skelton uvred a modified verslon of the Eulsr method on the same problem
in [é.l], aﬂd slso found thatb i‘%, wes an adeguete integration technique,
| S@mr’a}. techulyies for ﬁw::‘a ng ccapater time were used in the

in’b@gm‘ti@n roubiness

a) The metvix eguetions to be integrated were the state covariance
equ&atiﬂn {33} and the Weestl eguation (2-23), (In the sscond example,
the Kalmen filter eguations were not required: ’sc the @mr sovarignce
matrix Ek(t.) did nat bave to be compited, and the terms m (3-1) and

1
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g (3-3) dnveliviug EL wers seb Lo zerc.) The acintion matrices (C {t) ang
Ji" (£)) of thoase wonations are Loth sysmstyic, 8o only the ugper helf
and the disgonsl perts of the matrices were computed, Since both P
and C, were 10 Ly 10 metrices, this meant that 55 simultansous equetions
| ‘(iriﬁtﬁml of 10U} were Anbegralod in eash sase, A

b)) A3 can be sesn Jrom (2«33) and (33}, the wm}mmmcm of the
__darivatim matrices P ("L} ani ¢ ('t) invelved & mwber of muitiplications
of high«wﬁzw matriozs, Thess mtﬁ;pliemmm were the 'ﬁp@ratioria in
" the :!.nt@gm%w roubineg which took the mst compater time, ﬂa@mforeg
,.swgisﬂ. routiney wkleh elicdvated many ¢ re~ondiiplications were written
md.wm,‘ instead of slandord wabrix mztmplicm.icn %bmu@;imm

6) It enn b sesn fr v iho g stem @v’m‘,ﬁ,aw as written in
Appendix B (equaiions (B33} %o {m@g)}, that the paranster m&“ﬁriaé@
| A’,E,C, and D mugd be raocz wiked erery 9 0L sevonds during the integra-
tion procoss, usiiy m’% s @’ or ﬁfm@rym&mmc{} values of the CF,-
'mf:ﬁ‘iemmm To pave on seambtar time, the values @f‘ tiw ;%ﬁ,k% izﬁ m&
‘D mtzﬂ.ws at five-gaccnd dut wzrmm weye insltead m;*mpute& b@mm}mm%e
" Thex - 't:h@é.ss wi%x v Jiregrly intewnilatod values wore aa@d directly in
"kh@ iﬁm”‘m‘%’i@n weatdrgs ol A the &fmﬁumti@n of 8(%),

Ua&z@g dhe ahgue twohedges sad the Buler lategration mﬁtﬁmﬁ rogulted
'rm r%gsmmma eongrte 2 Liwse (0 A’k‘i}fﬁ?&ﬁ, processor execution time on the
CDC 6%@} *‘m "?”m sse3d wxsigples  The integration of the Ric':gati. egaa-
titm .‘m (2»»23) %m G F%&%é&ﬁm the immgwst@n éf the covariance
" wequa‘hi@n fm (3«3 % «%thw %ﬂ% %?m conpntation cﬂf 3 wy (3»1) took 45
wmmw,, I‘i‘, saouid e an 4 QM'?; ’%im pmfm@mm@ fm&ic@a J in

(6»3%) and JM, in {t,»»!é{"‘ mw:wm iﬂt@g &‘}.s of m«.;i;ianﬁ fs£ 3(‘!;)5 and

Y
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were thorefm cemrntad a}.om uith c (i'.) and 8(t), The computation of
e JNJ:mk“ abon‘h 1@ mem&s;,;awi %hat et I tmk about 115 seconds (due to
 the mplaxﬁ.ty of J ), a Tt m@ thiu difi‘arema in time requived to come

pu'be Jg and J 'hhat was the m r&amn for tha differense in computer

times for the PGH and DEIM ﬂgoﬁ.‘thms, a8 menmmé in Section 6,3,
it s possible thst a hybrid eamp!:ter facility would have been

tlw most efficient computing ‘ool for the implementation of the PGM
anﬂmmdgorim Thsmtbnlkoftm digital mmﬁmm
used to mtegmte the Rictati and- covariance. m%aw. My o e
umxldhave been saved if the aqmtiamwem miwg,mtedm@mlog‘ i
eonputar_. The computation of the mew quadratic mfﬁciantg would Iuve
- been porfamﬁd digitally. ‘Sﬁ.naa o hybriﬁ fmility was évamb;l.e,
however, it was mot pussibie to try ihis computational method,

G.Z ;'}
When implmmmg the PGM and DGB.‘E& algoritims, it was often

necessary to store, ;umh’ out, or manipulate certain mairix time functions
defined on the entire problem time imterval. For example, a feedback
coefficient mstrix K(t), t&[t,,T], which was computed by integrating the
R:!.ccati oqaatien (2-23)s had o bs stored on punch cards so that it
. oould be_used,}.atar in cmpating Cx(t) from equation (3-3), The method
used was to a«i';are the values of the matrices at given equidistant time
’instwhs. and use these values in manipulations or to produce punch card
voutp\tta ‘!han the resulting matriz time funétion was recovered (approzi-
mtaxy) by int.orpa}.ating the given valuss, Linear interpolation was
uny used, becauss higher-order inmterpolation metho‘c@s ocould not be
K 3ust1ﬁod ‘unless uxtensﬂ.va kmwladge of the time fhnctiené imlved was

\
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n’mﬁ.abi% his koowlodge was not ammm@ beforshand, in gemré.l.

whhod wes used, In the first example, the
valm of the fans tions were %%Wﬁ, 2t lesocond intervals (ever a 10

: amm pmmm time) and in the sveond sxample, at 5«second intervals
o (mr a 150«second problem timo). The shove .‘iﬁﬁ;@mlﬁ were chosen

WWM% and wore found Lo be adequate.

Gy 3 Snp-dimanssis

| jonal Mindmization in PGM
5 m mem. stop in the PGM algeritim, as dascﬁ.had in Figure 5.3,
‘f-he é@%mimm,@ﬁ of the 9€00,1] at which JE(}M}'}&% 4+ ’y% *3 is a

mmimm, g&wn two points &ig -ai%m This can be viewed as a "onou
dimensional® rinimization problem, in which the functionsl J is to be
The taciniqu@

4 axd 5i$e

- used in performing this tesk was based on the fzet that the mmtiomla

‘mimmdzed on the "straight 1ino" conmecting 8

to bfs winimizod in both exgmolos were conveX, As dssoribed in mmpter
6y the PGM algoriths was spplied o J in (6-6) in the :f‘im‘h example,

: and to Jy in (6-440) in the sscond exsmple, Pecazuse of this convexity
prapam, a locol miviwmm point along the “straight line®” is also the
absolute minlmum polint.,. Therefore, the winimization technigue was
simply to “walk® from 8; to 8%, sempling the functional J along the
way, until a locsl mindmm of & was found,

To Mplmm%; this techniaue, a metiod of fakirg appropriate “steps®
~aleng the m wag developed, as was & method for evaluating J at each
step, These two methods Will be deseribed separatelys
1) "Walking" Techmique

Kt the ith stegs of tho POX algorithm, the points §; and 3,* ave
aveilable, A4 mothed of “walling” on & straight line f@\ﬁi v*hm _ 314,}
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t@ find an apymmmts 1@6&3. mﬁ.ﬁi&mﬂ of J on this line is defined in

ﬁgm Gil. The following m,am x n  T——
| I‘:x = "stmﬁght Lino" fm “tn‘,-si' '

3 '{ﬁsﬁ = {Ed?}ﬁi %y%i’!gg
for all ’yﬁ!‘,&gi}{,

7 = fraotional distance. al@ng b frem § to %i*.. as in the

above definition of L, .

m basiﬁ ie%w.«f .’m tlm mlkixyg t@ahnique is to store the value of

g ‘gﬁ,nmgﬁg esf the lﬁm;; &‘@39 ‘Ten a “step" along L, is

saker . axﬁ the vglm of J is a&mpled a‘k this new point, If the latter
valua of J ig less than that e:b 31,
"!;ho "walk" is continued es long. 28 t.ha a&mﬁed values of J contime to

\thms the new point is storved and

damasa, ' If t&w sampled m}:a-.a ai‘ é &b a new point is grester than at
- 'hhe pmvicns point, the pwﬁ*iﬂw p@m’% is t&ken to be an appma:imta

leeal winimom point of J on Li
Daring the prosess of tm walk. et

. "
m -0 fm:‘

= the point on L ﬁ; ﬁMﬁh J Iw& taken on its smallest value
Vg = the valus of vﬁ%:aif:-’«‘s @@mép@m to gim

&, = the naxt point on. Lg ab ‘Shich the value of J is te be
- sampled and wmmm@ with J{&m),
‘yc = ‘hhe vslne of ¥ mgsa @@wsmm to §

A7 = the gize of the “si:@p“ w '&a talmn from sim to sm.
mmmd a8 a frmmtm of t&w length of Lio

Esi:ag the a’wm mobation, 'ma mmﬁm in ‘ﬁ‘iguw G.1 can be desecribed
By the fnnowmg sequence of &%pm" \
'a) The walk begins at B .




Y.ty + b4y

Ve Yo + &y

{4y + 0.1 x &y &

e -0l

‘Pigure 6,1  One-Dimensionsl Minimization Techmique



3 55'“ lamm;m The i.mmas,ﬁ smp sizo 1s Ay = 0,13 that is, the
o hugth @f m ﬁw& etep 18 onp=benth the distance from 8, to 82,
Y m mpmam the given value of 7., The
4 p@iﬁ% 5:2@’ aﬁ which J will be. wmlmt@d and compared to J(a )s is

alsa wputad, ugirg y@ 'y + ay.. (4t the beginning of the walk,

7 ” 0 aﬁﬂ- ?e = 601? m ﬁ‘ .85, &nﬂ ‘éi k- gag ﬁi L 4 ﬁ‘l 81*0) o
ﬁm wmmm’tﬁﬁn of azm and ”1 ‘is sarried out as follows, The

v m‘ts 5 &rﬁ! 3 *. are d{ﬁmﬁ& by the corresponding matrix functions

3 'and si*(t) by the "stacking" procedure described in
,{m:w t}xa superseript i corresponds to the subscript i in

5.) In 'blm wﬁ‘m&}. computation process, S (t) and §° *+) are evailable
,in ‘h&w form az‘ valuss @f ths %a:hrﬁces at @quidistmt time instants in
the mwm Et .?3, sa.y 2t ¢ = tk. k= 041425500k where te =T, and
tk@ftk is wxzs’b&r - The intermodiate valuss of the matrices are then
appm:dmwd by linsar interpolation (this method of storing and
ha@.ing natrix ‘hima_ functions is deseribad in section G.2). Let the
‘points ‘ﬁm' 'arsd §:£<!: be dﬁfm& by the corresponding matrix time functions
Em(t) and S (t}e The values eof W&@s@ matricss ab Mk, k&@.l 2....1;
warq gempzmeé bys

M) = st ¢ st __

5"t = ey dst ) + 7870 (a-2)

' The intermediste valuss of 5 (t) and 5°(t) in the interval [t ,T] are
" ‘then dsfimd by linear interpolation of the valnes of tha\‘amws ’iﬁ;



167

tka &iacw% %ﬁm@&. Ey ‘%ha a’b@% mwdﬂm ‘klm entire time functions
3%”{1!.} and 3”(%) am dﬂﬁmﬁ, *’m:fam L m E and 3 The

mamw tim mmmm mﬁ :’m @mh wz»w.a were discuseed in section

e ﬁf.z. S

" c) 'ﬂm valueg of J 8t & and 8,  are compared; if J(ﬁi‘;)‘g J(ﬁm).

".then - is a@t eimal to Yo a,mi th@ walk continues, The procedure
mams to b), with zgpdam Ty ‘and y_. If the above inequality holds

iyl ",a,,_t}m means that the "valk® from 8, to &,* has besn com-

odi a.zgl that 8% 49 the épproxinste minimum point of J on L. S0

y e set oqual to 1, 3 1 18 586 @qwtl o si , and the minimisation

' pmedm-e is taminawd,

- d) If the inequality J(3y,) > J(3;,) helds instosd of the reverse
11mqntuty :hz a)f, thexz 3, 1s an spproximate local minimum point along
g I‘i‘ w!:hhin the amrm of tho step aiza 4y = 0.1,

: e) If tlw inequality in 4) mm on the first "step" (i,e.,
vf“'-y;mn Yo n 0 and Yo © ma}, ﬁ:?. mns that the winimum point of J on I‘i
. mnt mmn' fnz‘ -'yﬁ{ﬂ %1}‘ m@rsf@m, the “step size" Ay is rediced by
a factor of 10, and the NI msmmd &t 8, (withy, =0), This

_ fwduetion ui‘ step size :md %m,ax‘ting of the walk is repoated until an
o ?awwximaw e pom-. s found in {e,m.). A mindmuw polnt is

s 7 mrmm w mm by wml%mizm 1) of Theorem 5.1, 80 an approximte

| rﬁm:mn peintnan’m fmxﬂ, : L

°2) At this stage in the phosedire, an approxinate minjmm point
f@f J has baon found by t}m mps mﬁim& above, 'This point is omd of
tbm %ypaaa 1) it s the end point of the line; L.e., ?m = 1and’

a a *; u) it isa paint in (0.0.1). and has been detemhwd with



tatim vg‘mg ‘of Ay when the approximate local
i wxa d;’mm by 10 until such o minmi-

Mapuirxbs

mdzfinad byyuO.lxN,

| ﬁmo H is sama ;tnwgw fm’l tﬁm&h 9. and has besn found within the
Ly -} famracy a;t ﬁm a%p aﬁ.m A’;v = Q.Ii,., In this last case, a better

t:pprw.mtien is then mpuw& by 3.e‘b‘hmg b Al AR 5 Y (i.&.. by taking
‘ "a'kop backward"), reducing the step size to Ay = 0,01, and restarting
vtho "walk" fmmmmt%whiehwmspomtam rew ¥+ A new
g.émﬂ.nﬁ.mm p@iﬂt is then dmmd with an aceuracy corres-
;penﬂing"heua step size af A‘y ﬁgﬁ},.

. The pmeeduw éeacrib@ﬁ above was the one used in the first

'_mnple in Chapt@r ba In the second mpm, the mduction of step
' sise w A‘}' = 0.61 ami 'bha mhaaqnent mf‘irwmem; of the appro:dmte
mim.mn point (&wcribed &ﬁmve in f}) was not parfamd. This simplifi-
'cat:lnn was made because it. Was - feund (in the first example) that ‘the

. 'raf:hmzent procadurs c.!id ot spesd up the convergence process to any

r."-g:mt m@m The results daaerﬁ.had in Section 6,3 using the simplified

! : mminiuticn pmceéaw wers ‘quiw satisi‘amry, so no further adjust-
ments in the pmcedxxm wore made,

| a) Evaluatmn of d
Qm of tha steps in the nzinimimﬁ.on procadurs described abova
ﬁf,l:racgairas ‘hhat J(ﬁm) and J(a ) be evaluated, given the points sm

md n m p@ints §im and % o are defined by the corresponding

e mtnx time functions, S(¢) and gho (t), as described in step b) of
the abow uimimmnn proced

tMP‘

4 . In the following &iamsion, :}.t is
r “med Wt ﬂw values of 3 "(t) and §* ®(t) at dismt& fmatmts of
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; kam h@en mwmt uﬁim mmm (i-].) and (G=2), The values
aea a:%:. mm " 'f'te gmimm in tima are found by linear

: m mﬂwd weﬂ m e’vazmm J(ﬁ ), g:mn 8 (t) in the above form,
»wiu m ba dawribm (J(Em } ma found in a sim:mtr waw). The gensyal
“fum of J uwd in the evaluation praeadnrs is gi*mn :Ln (2«16). ‘Sinee

s_ (’1?) wag. givem hy (M), th@ fix'at tem in (2-1) was computed
direcily, ﬁm mm@m tnm Waa Waluated by first defining a new

!

e £ |
Py ® mjt RACR Y. (G=3)
: N ‘ .

5 whm-e :t‘ m m sameo es in (zwzé}. A corresponding differdmtisl

oy 8 mtion for pm(t} st

dpy, (6 "
— = 1181, (Gt
ot *p”(@) =0, (6-5)

The ahwe differential equation .w then integrated mmerically, and
 the valxm of the sscond term in (zwa) was set equal to p, (T) to

‘mple% ﬂw eamgmta‘hmrz of J(&m)» O

" The mmeries) integretion methods nsed in the evaluation of J

W tha ‘pame a8 used to in‘b@gra;w thfa Riseatl and covariance matrix
‘ oquutims (m saction G.l), A ﬁmm—ﬁutm usthod was used in the first
- muple fm Gkap‘tw G, smd the aﬁmp}.a Buler method was used in the second
exmiple, e values of 5(t) used in computing the right sids of (G-i)
;u.t oach imgz'atmm step wore obtained by Linsar mmun of the
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si_',n; vaii%za of 3”" at ﬂiam% tﬁm :x.mmma. -

5} v 66 ﬁﬁz&e@@ evaluated by the above method
methammim%ym {é«wﬁ) {inth@ ﬁm—twmpla), and the Jy; index
:}.n (Eu%) {m t&m mmm’i @mgl&}. The successful use of the PGM

,/‘

algoﬁtkm m ‘%&m o @mmpl% in Chapter 6 indleate that the above
‘,mtho& is a m‘kmfmtaw ong.

'::&.&- Evam%on of ‘r”ﬁ@i Hesults using g

e ____emzap}.a éiwmsaé in saetiw ﬁa% the PGH algorim was
od m ‘the gﬁwﬁl of minimsing the s performence index, m '

ey let af this apol aa‘%.iazx was & ‘seguence of points [si} in o, It was

‘ ,; ‘,af m‘kem&t m em@aﬁ@ the ma;a of the J, p@w’@m&ma index (Skelton's
1 ig;pmbabi.}‘ity upper bmnei} fﬁﬁ' each of tms@ esiw@ This problea of
mtmg J (& } g:’mm the peint §; 18 very similar to the evaluation

- fpmblm ﬁi&w@m& :’m part b) of the a?;m*a sostion G.3, The point si
S Jis d@finad by its sorresponding matrix time funetion 8 (), just as
m was dofined by simm, ‘ mg $i(t) was aveilable (computationslly)

:i.n ‘E}w form of its mltms st diserete instants of time over the time
intmal I:*:. 2Tl The iﬁ%ﬁ%&dﬁ,&m valoes of 3“’“{%) ware appmmated

by lim&r mmmmma uwm@w of them gimilarities, the same

Wﬂu&ﬁm mathad as mm
‘ '_‘J‘wm,eh is éﬂﬁmﬁ in (6%35»&},
' " A m &M% ammwm nothed was mm‘l in computing the values of
5 ,; shwn :m me@ 6,3.3 m 6,}3& Iﬁ these figures, the results of

&P?l?ing th@ PG olporitim t@ the Jﬂmpreb}.@m and of applying the DGIM

od 40 mﬂt&.m G.3 was used to compute Js.

o algarithu to th@ wpwb:wm m cmmd The values of ‘J shown are
- ""3'._’:‘en:l.y awma% onsy h@mmm the iinesr interpolation ap%rwcmmaﬁ |
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4 3%‘(\&1 h@m@n he gimza tfs,m ﬁ;mt&mm introduces errors into the
onputation; @f Iy '

W m mm mmw and the PGM results were
; b%&h mm& mﬁ,ﬁg ’%}&m s&mm w sxinate mmlwd, go the comparison of
‘hhe mmts 18 a falr ongy’ '

Go5 c;mgémman of Ay and A3

e gsmblmss discussed in Chapter 6, it was required
"‘:"’f’“.i;i,gas b3 (dafined in (6-13)) and 4; (defined in (6-14))
A mpm,md in maﬁan 6.2;2. t}mm mmbers were

1 “@.ﬁgm“ Wwﬁ ﬁm m'bum in the spece o (0 is
pacitiod iﬁ.ﬁaﬁﬁi@i&n 3 of Chapter 3), By the #@ﬁm’%iow in Chapter

| I},} - ,
0= i é&w i ..m.;(f%mfm (G~6)
"l e T il o '
!os 80
o e G DJ(8"} :
By = ] 2}3& ﬁm(‘é@ }i (©-2)

i‘he veetors® . W{giﬁt}" and DI(E®) ave all given elements in the
apmm o4 and the nom ﬁ fécr i&@fm in mtie;ﬁ (3—3.1); The compue
i tatian of ﬁh«a novn of an %mmat in o is the essential problem in the
o dnmmn of b, and 43,

' ‘I’e describe the method used @.;a mpﬁm the norm of an elsment in
‘-;gfa. wa eanamm & typicol given elenent 8 = {ep,o(t)Ko. The vectors
,'e and ® m i «cm@%‘mm&, md -@{’k) is defined on the ﬁm interval
{t ,’T], 'ﬁw norm of & is defined to b

M@ - {@? . @? . j oe) - a(t)dt} - (a-8)

{3



"m {,m% wss mm m m:mm m:- product, As discussed in

:m@ﬁby “stncking the colunns of

f2 .
e (G-9)

,:'wasdismmd in Wﬁm&s &@’E:g ﬁ;B; and G&, 2 matrix tiwe

fon mh as B(t) is Wﬁ@d computetionally by its values at

m ,a:mxm wqumistm instants a:i' time in 1z, 1], Let these time

wmh@ {tk}a k - gaglgaaekﬁ Wh@l‘é 'tg % ?, m l@t tk*l-tka ¢ for

kai;v Fem i:m Wma @f mpnting the nore of &, the time

mrm ['h ,r} m& am.@é mza Ckul) subinterenls Etk.tkﬂ). where

: -;,t < tl“i'. watE = ?. Then E(t) was apprmawd on these subintervals
W

E(t) = a(tk) mn fgﬁ{% %,,1}3 (6-10)
: ‘ fﬁ?ﬁ' k £ @.3,":.1{“3., ;

prroximation for B(t), equation (G-9) can be approxi-

Haﬂa {Z '&@Z Z 3af.k)}l" (G-11)
- 13 t? :

The ahwa aypmmtim m the mm was used in m tiug A,i. For

| nota‘hinml eommeam, m S m(& *)and § = §,, By deﬁnztmu oi’



4 [TERM 1 + TERM 2]

mm m; m%ml | MT’

PP i Z [Qm,czk) P ct,,)] '
myRel k=0 Hldflo fiplle
and whers f{aﬂa and ﬁp}fa are alse approximated ueing equation (G-11),
The qumtity ¢ 18 the interval of time between the time instants at
whieh 'ﬁm valuss of Q(t) and P(t) ave specified computationally.

. The qqmbityé" vas computed in s similar menner, The sbove
wthod of computing 4y and 49 was used in the results shown in Figures
i _.;."é.&. amd 6‘15. In the first empl@, ¢ = 1 sec,; in the second
s wple; ¢= . 5 sec, s mentioned in ssction Ge2),
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TCRRETRLEY .
The stochestic optimal ¢nnt?m& yrwblam som&i&@r@d in this rap@rﬁ is charaseterined

by o Gynemds system whieh 1o linesr in the siste and control vectprs, snd vhich

is disturbed by ndditive Ceveclen vwhite nadaeﬁ Incomplate, nolay cbservations

of the state vagfwr ara &Vﬁii”hs@a -ané %%% eontrol 1z required to be a lineay

feedbaek functhon of the gsvinated state vector. The conponents 'of the state

vector and eontrel veetor which are of int@f@aﬁ are lumped together in a regponees

vector, and the performence index to be minimized 48 thew a function of the

‘shatistics of the response vﬁa?mv,~ 3% is shown that o wellekuown stochagtie sontrol

‘problem, vhose perforzence indew is the ayp@a*a@ value of a gquadratlics Tovm on the

state wd control, 1s & special case of the move general problem described above, .

~ The general problem is then refurmulsted sy o problem of minimizing e nonlinewny

funetianal on » seb in a Hilbert speces In thin formwlation, the welleknown "quroratic

problem becomes one of winimizing o linear fusctionsl on the same set in the spuce.

Conditions are derived undey vhiahethe two problems are "equivalent™; that is, the

dipesr end non-iluser funetionals which specily the problems tmka on their mininur

valus at the seme point in the @g@m@s

: A funatiﬁm ppase algorltbn of Danm'yancy 1w then spplied t6 the dolution of the

%@%ﬁ@%& vroblem, This algorithn mekes use of the kneown farmal‘aoluxian ‘o the
"quadretic” problem in the iterstion procedure., In functien sphee terms, the elgorithm
it@rmzivaly golves the problem of minimizing the nonlinear fﬂmet*anml hy aaivimw 8
sﬂqm@m&@ af Emﬁ%mr fmmm*x@m&l winimlgation yrﬁhlkmsa . '




The avove epprosch is illustrated by two example problems, In the first
example, the objective is to find a "minimum varience" control for a third-order
dynamic system, In the pecond example, the objective is to find a comtrel which
minimizes wind-gust effects ¢n & large, Tlexible launch booster., The booster dy
snd windegust effects are modeled by s tentheorder time-varying linear differenti:
system,

The function space approach and the slgoritbms develcped were found to
be useful in obtaining good comirols for both examples,




